Skip to main content
Log in

Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator

  • 3DR Express
  • Published:
3D Research

Abstract

Most complex object models are composed of basic parts or primitives. Being able to decompose a complex 3D model into such basic primitives is an important step in reverse engineering. Even when an algorithm can segment a complex model into its primitives, a description technique is still needed in order to identify the type of each primitive. Most feature extraction methods fail to describe these basic primitives or need a trained classifier on a database of prepared data to perform this identification. In this paper, we propose a method that can describe basic primitives such as planes, cones, cylinders, spheres, and tori as well as partial models of the latter four primitives. To achieve this task, we combine the concept of Gaussian sphere to a new concept introduced in this paper: the Gaussian accumulator. Comparison of the results of our method with other feature extractors reveals that our approach can distinguish all of these primitives from each other including partial models. Our method was also tested on real scanned data with noise and missing areas. The results show that our method is able to distinguish all of these models as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Baareh, A. K., Sheta, A. F., & Al-Batah, M. S. (2012). Feature based 3D object recognition using artificial neural networks. International Journal of Computer Applications, 44, 1–7.

    Google Scholar 

  2. Bay, H., Tuytelaars, T., & Van Gool, L.: Surf: Speeded up robust features. In 9th European conference on computer vision (ECCV) (pp. 404–417). Springer, Berlin (2006)

  3. Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9), 509–517.

    Article  MathSciNet  MATH  Google Scholar 

  4. Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-D shapes. Robotics-DL tentative (pp. 586–606).

  5. Bronstein, A. M., Bronstein, M. M., Guibas, L. J., & Ovsjanikov, M. (2011). Shape google: Geometric words and expressions for invariant shape retrieval. ACM Transactions on Graphics (TOG), 30(1), 1.

    Article  Google Scholar 

  6. Castellani, U., Cristani, M., Fantoni, S., & Murino, V. (2008). Sparse points matching by combining 3d mesh saliency with statistical descriptors. Computer Graphics Forum, 27(2), 643–652.

    Article  Google Scholar 

  7. Darom, T., & Keller, Y. (2012). Scale-invariant features for 3-d mesh models. IEEE Transactions on Image Processing, 21(5), 2758–2769.

    Article  MathSciNet  Google Scholar 

  8. Dubrovina, A., & Kimmel, R. (2010). Matching shapes by eigendecomposition of the Laplace-Beltrami operator. In Proceedings of 3D data processing, visualization and transmission (3DPVT) (vol. 2, no. 3).

  9. Fehr, F., Streicher, A., & Burkhardt, H. (2009). A bag of features approach for 3D shape retrieval. Advances in visual computing (pp. 34–43). Berlin: Springer.

    Chapter  Google Scholar 

  10. Flitton, G. T., Breckon, T. P., & Bouallagu, N. M. (2010). Object recognition using 3D SIFT in complex CT volumes. In Proceedings of the British Machine Vision Conference (BMVC) (pp. 1–12).

  11. Furuya, T., & Ohbuchi, R. (2009). Dense sampling and fast encoding for 3D model retrieval using bag-of-visual features. In Proceedings of the ACM international confernce on image and video retrieval (p. 26).

  12. Gebal, K., Bærentzen, J. A., Aanæs, H., & Larsen, R. (2009). Shape analysis using the auto diffusion function. Computer Graphics Forum, 28(5), 1405–1413.

    Article  Google Scholar 

  13. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., & Wan, J. (2014). 3d object recognition in cluttered scenes with local surface features: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11), 2270–2287.

    Article  Google Scholar 

  14. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., & Kwok, N. M. (2015). A comprehensive performance evaluation of 3d local feature descriptors. International Journal of Computer Vision 1–24.

  15. Guo, Y., Sohel, F., Bennamoun, M., Lu, M., & Wan, J. (2013). Rotational projection statistics for 3d local surface description and object recognition. International Journal of Computer Vision, 105(1), 63–86.

    Article  MathSciNet  MATH  Google Scholar 

  16. Harris, C., & Stephens, M. (1988). A combined corner and edge detector. Alvey Vision Conference, 15, 50.

    Google Scholar 

  17. Hetzel, G., Leibe, B., Levi, P., & Schiele, B. (2001). 3d object recognition from range images using local feature histograms. In Procedings of IEEE computer society conference on computer vision and pattern recognition (CVPR) (vol. 2, pp. II–394).

  18. Hoppe, H. (1996). Progressive meshes. In Proceedings of the 23rd annual conference on computer graphics and interactive techniques (pp. 99–108).

  19. Johnson, A. E. (1997). Spin-images: A representation for 3-D surface matching. Ph.D. Thesis, Citeseer.

  20. Johnson, A. E., & Hebert, M. (1999). Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 433–449.

    Article  Google Scholar 

  21. Kazhdan, M., Funkhouser, T., & Rusinkiewicz, S. (2003). Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proceedings of Eurographics/ACM SIGGRAPH symposium on geometry processing (pp. 156–164).

  22. Kin-Chung Au, O., Tai, C. L., Cohen-Or, D., Zheng, Y., & Fu, H. (2010). Electors voting for fast automatic shape correspondence. Computer Graphics Forum, 29(2), 645–654.

    Article  Google Scholar 

  23. Knopp, J., Prasad, M., & Van Gool, L. (2010). Orientation invariant 3D object classification using hough transform based methods. In Proceedings of the ACM workshop on 3D object retrieval (pp. 15–20).

  24. Knopp, J., Prasad, M., Willems, G., Timofte, R., & Van Gool, L. (2010). Hough transform and 3D SURF for robust three dimensional classification. In 11th European conference on computer vision (ECCV) (pp. 589–602). Springer, Berlin.

  25. Litman, R., Bronstein, A. M., & Bronstein, M. M. (2011). Diffusion-geometric maximally stable component detection in deformable shapes. Computers & Graphics, 35(3), 549–560.

    Article  Google Scholar 

  26. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  27. Maes, C., Fabry, T., Keustermans, J., Smeets, D., Suetens, P., & Vandermeulen, D. (2010). Feature detection on 3D face surfaces for pose normalisation and recognition. In 4th IEEE international conference on biometrics: theory applications and systems (BTAS) (pp. 1–6).

  28. Mansfield, M., & O’Sullivan, C. (2012). Understanding physics. London: Wiley.

    Google Scholar 

  29. Mian, A., Bennamoun, M., & Owens, R. (2010). On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes. International Journal of Computer Vision, 89(2–3), 348–361.

    Article  Google Scholar 

  30. Mohamad, M. (2013). 3D object recognition using local shape descriptors. Technical Report No. 2013-614.

  31. Murase, H., & Nayar, S. K. (1995). Visual learning and recognition of 3-D objects from appearance. International Journal of Computer Vision, 14(1), 5–24.

    Article  Google Scholar 

  32. Ohbuchi, R., Osada, K., Furuya, T., & Banno, T. (2008). Salient local visual features for shape-based 3D model retrieval. In IEEE International Conference on Shape Modeling and Applications (pp. 93–102).

  33. Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2002). Shape distributions. ACM Transactions on Graphics (TOG), 21(4), 807–832.

    Article  Google Scholar 

  34. Paquet, E., Rioux, M., Murching, A., Naveen, T., & Tabatabai, A. (2000). Description of shape information for 2-D and 3-D objects. Signal Processing: Image Communication, 16(1), 103–122.

    Google Scholar 

  35. Peyré, G. (2004) Toolbox Graph. http://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph/. Accessed June-2004.

  36. Rabbani, T., & Van Den Heuvel, F. (2005). Efficient Hough transform for automatic detection of cylinders in point clouds. In Proceedings of ISPRS workshop on laser scanning (vol. 3, pp. 60–65).

  37. Ruggeri, M. R., Patanè, G., Spagnuolo, M., & Saupe, D. (2010). Spectral-driven isometry-invariant matching of 3d shapes. International Journal of Computer Vision, 89(2–3), 248–265.

    Article  Google Scholar 

  38. Scovanner, P., Ali, S., & Shah, M. (2007). A 3-dimensional sift descriptor and its application to action recognition. In Proceedings of the 15th International Conference on Multimedia (pp. 357–360).

  39. Selinger, A., & Nelson, R. C. (1999). A perceptual grouping hierarchy for appearance-based 3d object recognition. Computer Vision and Image Understanding, 76(1), 83–92.

    Article  Google Scholar 

  40. Semechko, A. (2012). Particle sample sphere code for uniform tessellation of a unit sphere:. http://www.mathworks.com/matlabcentral/fileexchange/37004-uniform-sampling-of-a-sphere. Accessed June-2012.

  41. Shang, L., & Greenspan, M. (2010). Real-time object recognition in sparse range images using error surface embedding. International Journal of Computer Vision, 89(2–3), 211–228.

    Article  Google Scholar 

  42. Sipiran, I., & Bustos, B. (2010). A robust 3d interest points detector based on harris operator. In Eurographics workshop on 3D object retrieval (vol. 1, pp. 7–14).

  43. Sivic, J., & Zisserman, A. (2006). Video google: Efficient visual search of videos. Toward category-level object recognition (pp. 127–144). Berlin: Springer.

    Chapter  Google Scholar 

  44. Sun, J., Ovsjanikov, M., & Guibas, L. (2009). A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum, 28(5), 1383–1392.

    Article  Google Scholar 

  45. Teichman, A., Levinson, J., & Thrun, S. (2011). Towards 3D object recognition via classification of arbitrary object tracks. In IEEE international conference on robotics and automation (ICRA) (pp. 4034–4041).

  46. Tombari, F., Salti, S., & Di Stefano, L. (2013). Performance evaluation of 3d keypoint detectors. International Journal of Computer Vision, 102(1–3), 198–220.

    Article  Google Scholar 

  47. Toony, Z., Laurendeau, D., & Gagné, C. (2015). PGP2X: Principal geometric primitives parameters extraction. In Proceedings of the 10th international conference on computer graphics theory and applications (GRAPP).

  48. Toony, Z., Laurendeau, D., Giguére, P., & Gagné, C. (2014). 3D-NCuts: Adapting normalized cuts to 3D triangulated surface segmentation. In Proceedings of the 9th international conference on computer graphics theory and applications (GRAPP).

  49. Wahl, E., Hillenbrand, U., & Hirzinger, G. (2003). Surflet-pair-relation histograms: A statistical 3D-shape representation for rapid classification. In Proceedings of fourth international conference on 3-D digital imaging and modeling (3DIM) (pp. 474–481).

  50. Zaharescu, A., Boyer, E., Varanasi, K., & Horaud, R. (2009). Surface feature detection and description with applications to mesh matching. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 373–380).

  51. Zhang, C., & Chen, T. (2001). Efficient feature extraction for 2D/3D objects in mesh representation. In Proceedings of International Conference on Image Processing (vol. 3, pp. 935–938).

  52. Zhang, J., Cao, J., Liu, X., Wang, J., Liu, J., & Shi, X. (2013). Point cloud normal estimation via low-rank subspace clustering. Computers & Graphics, 37(6), 697–706.

    Article  Google Scholar 

  53. Zhu, K., Wong, Y. S., Loh, H. T., & Lu, W. F. (2012). 3D CAD model retrieval with perturbed laplacian spectra. Computers in Industry, 63(1), 1–11.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSERC-Creaform Industrial Research Chair on 3D Sensing. Z. Toony was supported by a FRQNT post-graduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Toony.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toony, Z., Laurendeau, D. & Gagné, C. Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator. 3D Res 6, 42 (2015). https://doi.org/10.1007/s13319-015-0074-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-015-0074-3

Keywords

Navigation