Skip to main content
Log in

Prediction of Drug–Drug Interaction Between Dabrafenib and Irinotecan via UGT1A1-Mediated Glucuronidation

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Dabrafenib and irinotecan are two drugs that can be utilized to treat melanoma. A previous in vivo study has shown that dabrafenib enhances the antitumor activity of irinotecan in a xenograft model with unclear mechanism.

Objectives

This study aims to investigate the inhibition of dabrafenib on SN-38 (the active metabolite of irinotecan) glucuronidation, trying to elucidate the possible mechanism underlying the synergistic effect and to provide a basis for further development and optimization of this combination in clinical research.

Methods

Recombinant human uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) and human liver microsomes (HLMs) were employed to catalyze the glucuronidation of SN-38 in vitro. Inhibition kinetic analysis and quantitative prediction study were combined to predict drug–drug interaction (DDI) potential in vivo.

Results

Dabrafenib noncompetitively inhibited SN-38 glucuronidation in pooled HLMs and recombinant UGT1A1 with unbound inhibitor constant (Ki,u) values of 12.43 ± 0.28 and 3.89 ± 0.40 μM, respectively. Based on the in vitro Ki,u value and estimation of kinetic parameters, dabrafenib administered at 150 mg twice daily may result in about a 1−2% increase in the area under the curve (AUC) of SN-38 in vivo. However, the ratios of intra-enterocyte concentration of dabrafenib to Ki,u ([I]gut/Ki,u) are 2.73 and 8.72 in HLMs and recombinant UGT1A1, respectively, indicating a high risk of intestinal DDI when dabrafenib was used in combination with irinotecan.

Conclusion

Dabrafenib is a potent noncompetitive inhibitor of UGT1A1 and may bring potential risk of DDI when combined with irinotecan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K, Kageshita T, et al. Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst. 2003;95(24):1878–90.

    Article  CAS  PubMed  Google Scholar 

  2. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  PubMed  Google Scholar 

  3. Eggermont AM, Robert C. New drugs in melanoma: it’s a whole new world. Eur J Cancer. 2011;47(14):2150–7.

    Article  PubMed  Google Scholar 

  4. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.

    Article  CAS  PubMed  Google Scholar 

  5. Corcoran RB, Andre T, Atreya CE, Schellens JHM, Yoshino T, Bendell JC, et al. Combined BRAF, EGFR, and MEK inhibition in patients with BRAF(V600E)-mutant colorectal cancer. Cancer Discov. 2018;8(4):428–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386(9992):444–51.

    Article  CAS  PubMed  Google Scholar 

  7. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372(1):30–9.

    Article  PubMed  CAS  Google Scholar 

  8. Lawrence SK, Nguyen D, Bowen C, Richards-Peterson L, Skordos KW. The metabolic drug–drug interaction profile of dabrafenib: in vitro investigations and quantitative extrapolation of the P450-mediated DDI risk. Drug Metab Dispos. 2014;42(7):1180–90.

    Article  PubMed  CAS  Google Scholar 

  9. Suttle AB, Grossmann KF, Ouellet D, Richards-Peterson LE, Aktan G, Gordon MS, et al. Assessment of the drug interaction potential and single- and repeat-dose pharmacokinetics of the BRAF inhibitor dabrafenib. J Clin Pharmacol. 2015;55(4):392–400.

    Article  CAS  PubMed  Google Scholar 

  10. Gao K, Lockwood WW, Li J, Lam W, Li G. Genomic analyses identify gene candidates for acquired irinotecan resistance in melanoma cells. Int J Oncol. 2008;32(6):1343–9.

    CAS  PubMed  Google Scholar 

  11. Hanioka N, Ozawa S, Jinno H, Ando M, Saito Y, Sawada J. Human liver UDP-glucuronosyltransferase isoforms involved in the glucuronidation of 7-ethyl-10-hydroxycamptothecin. Xenobiotica. 2001;31(10):687–99.

    Article  CAS  PubMed  Google Scholar 

  12. Araki E, Ishikawa M, Iigo M, Koide T, Itabashi M, Hoshi A. Relationship between development of diarrhea and the concentration of SN-38, an active metabolite of CPT-11, in the intestine and the blood plasma of athymic mice following intraperitoneal administration of CPT-11. Jpn J Cancer Res. 1993;84(6):697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li W, Xing Y, Liu Y. Inhibition of SN-38 glucuronidation by gefitinib and its metabolite. Cancer Chemother Pharmacol. 2015;75(6):1253–60.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang L, Wang L, Zhang Z, Wang Z, Wang X, Wang S, et al. The pharmacokinetic interaction between irinotecan and sunitinib. Cancer Chemother Pharmacol. 2020;85(2):443–8.

    Article  CAS  PubMed  Google Scholar 

  15. Iwase M, Fujita KI, Nishimura Y, Seba N, Masuo Y, Ishida H, et al. Pazopanib interacts with irinotecan by inhibiting UGT1A1-mediated glucuronidation, but not OATP1B1-mediated hepatic uptake, of an active metabolite SN-38. Cancer Chemother Pharmacol. 2019;83(5):993–8.

    Article  CAS  PubMed  Google Scholar 

  16. Yanagihara K, Kubo T, Mihara K, Kuwata T, Ochiai A, Seyama T, et al. Establishment of a novel cell line from a rare human duodenal poorly differentiated neuroendocrine carcinoma. Oncotarget. 2018;9(92):36503–14.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Korprasertthaworn P, Chau N, Nair PC, Rowland A, Miners JO. Inhibition of human UDP-glucuronosyltransferase (UGT) enzymes by kinase inhibitors: effects of dabrafenib, ibrutinib, nintedanib, trametinib and BIBF 1202. Biochem Pharmacol. 2019;169:113616.

    Article  CAS  PubMed  Google Scholar 

  18. Yin H, Wang Z, Wang X, Lv X, Fan X, Yan M, et al. Inhibition of human UDP-glucuronosyltransferase enzyme by dabrafenib: implications for drug–drug interactions. Biomed Chromatogr. 2021;35:e5205.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang N, Liu Y, Jeong H. Drug–drug interaction potentials of tyrosine kinase inhibitors via inhibition of UDP-glucuronosyltransferases. Sci Rep. 2015;5:17778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Copeland AR. Enzymes: a practical introduction to structure, mechanism, and data analysis. Sov Appl Mech. 2000;26(6):515–23.

    Google Scholar 

  21. Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug–drug interactions from in vitro data. Br J Clin Pharmacol. 2004;57(4):473–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rostami-Hodjegan A, Tucker G. ‘In silico’ simulations to assess the ‘in vivo’ consequences of ‘in vitro’ metabolic drug–drug interactions. Drug Discov Today Technol. 2004;1(4):441–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ouellet D, Gibiansky E, Leonowens C, O’Hagan A, Haney P, Switzky J, et al. Population pharmacokinetics of dabrafenib, a BRAF inhibitor: effect of dose, time, covariates, and relationship with its metabolites. J Clin Pharmacol. 2014;54(6):696–706.

    Article  CAS  PubMed  Google Scholar 

  24. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  PubMed  Google Scholar 

  25. USFDA. Approved label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/202806s008lbl.pdf. Accessed 8 Jan 2021.

  26. Obach RS, Walsky RL, Venkatakrishnan K. Mechanism-based inactivation of human cytochrome p450 enzymes and the prediction of drug–drug interactions. Drug Metab Dispos. 2007;35(2):246–55.

    Article  CAS  PubMed  Google Scholar 

  27. USFDA. In vitro drug interaction studies—cytochrome P450 enzyme- and transporter-mediated drug interactions guidance for industry; 2020.

  28. Austin RP, Barton P, Cockroft SL, Wenlock MC, Riley RJ. The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab Dispos. 2002;30(12):1497–503.

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Ramirez J, House L, Ratain MJ. Comparison of the drug–drug interactions potential of erlotinib and gefitinib via inhibition of UDP-glucuronosyltransferases. Drug Metab Dispos. 2010;38(1):32–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Burns K, Nair PC, Rowland A, Mackenzie PI, Knights KM, Miners JO. The nonspecific binding of tyrosine kinase inhibitors to human liver microsomes. Drug Metab Dispos. 2015;43(12):1934–7.

    Article  CAS  PubMed  Google Scholar 

  31. Puszkiel A, Noé G, Bellesoeur A, Kramkimel N, Paludetto M-N, Thomas-Schoemann A, et al. Clinical pharmacokinetics and pharmacodynamics of dabrafenib. Clin Pharmacokinet. 2019;58(4):451–67.

    Article  CAS  PubMed  Google Scholar 

  32. Fuchs CS, Moore MR, Harker G, Villa L, Rinaldi D, Hecht JR. Phase III comparison of two irinotecan dosing regimens in second-line therapy of metastatic colorectal cancer. J Clin Oncol. 2003;21(5):807–14.

    Article  CAS  PubMed  Google Scholar 

  33. Berg AK, Buckner JC, Galanis E, Jaeckle KA, Ames MM, Reid JM. Quantification of the impact of enzyme-inducing antiepileptic drugs on irinotecan pharmacokinetics and SN-38 exposure. J Clin Pharmacol. 2015;55(11):1303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramchandani RP, Wang Y, Booth BP, Ibrahim A, Johnson JR, Rahman A, et al. The role of SN-38 exposure, UGT1A1*28 polymorphism, and baseline bilirubin level in predicting severe irinotecan toxicity. J Clin Pharmacol. 2007;47(1):78–86.

    Article  CAS  PubMed  Google Scholar 

  35. Gupta E, Mick R, Ramirez J, Wang X, Lestingi TM, Vokes EE, et al. Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients. J Clin Oncol. 1997;15(4):1502–10.

    Article  CAS  PubMed  Google Scholar 

  36. Gupta E, Lestingi TM, Mick R, Ramirez J, Vokes EE, Ratain MJ. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res. 1994;54(14):3723–5.

    CAS  PubMed  Google Scholar 

  37. Mick R, Gupta E, Vokes EE, Ratain MJ. Limited-sampling models for irinotecan pharmacokinetics–pharmacodynamics: prediction of biliary index and intestinal toxicity. J Clin Oncol. 1996;14(7):2012–9.

    Article  CAS  PubMed  Google Scholar 

  38. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol. 2004;22(8):1382–8.

    Article  CAS  PubMed  Google Scholar 

  39. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med. 1995;333(18):1171–5.

    Article  CAS  PubMed  Google Scholar 

  40. Sugatani J, Yamakawa K, Yoshinari K, Machida T, Takagi H, Mori M, et al. Identification of a defect in the UGT1A1 gene promoter and its association with hyperbilirubinemia. Biochem Biophys Res Commun. 2002;292(2):492–7.

    Article  CAS  PubMed  Google Scholar 

  41. Ando Y, Saka H, Asai G, Sugiura S, Shimokata K, Kamataki T. UGT1A1 genotypes and glucuronidation of SN-38, the active metabolite of irinotecan. Ann Oncol. 1998;9(8):845–7.

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Shen L, Xu N, Wang JW, Jiao SC, Liu ZY, et al. UGT1A1 predicts outcome in colorectal cancer treated with irinotecan and fluorouracil. World J Gastroenterol. 2012;18(45):6635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iyer L, Hall D, Das S, Mortell MA, Ramírez J, Kim S, et al. Phenotype-genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clin Pharmacol Ther. 1999;65(5):576–82.

    Article  CAS  PubMed  Google Scholar 

  44. Iyer L, Das S, Janisch L, Wen M, Ramírez J, Karrison T, et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenom J. 2002;2(1):43–7.

    Article  CAS  Google Scholar 

  45. Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov. 2007;6(2):140–8.

    Article  CAS  PubMed  Google Scholar 

  46. Yang N, Sun R, Liao X, Aa J, Wang G. UDP-glucuronosyltransferases (UGTs) and their related metabolic cross-talk with internal homeostasis: a systematic review of UGT isoforms for precision medicine. Pharmacol Res. 2017;121:169–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Cao or Yong Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethics approval

Not applicable.

Funding

This study was financially supported by the National Key Research and Development Program of China (2017YFC1702006), the Fundamental Research Funds for the Central Universities (DUT21LK11).

Availability of data and material

The material supporting the conclusion has been included within the article.

Code availability

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Author contributions

ZW, JC, and YL contributed to the study conception and design. ZW, XW, and ZW contributed to the acquisition of data. XF and MY contributed to the analysis and interpretation of the data. ZW, LJ, and YX participated in the analysis and interpretation of the data and in the drafting of this article. All authors provided critical revision of the article for important intellectual content.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, X., Wang, Z. et al. Prediction of Drug–Drug Interaction Between Dabrafenib and Irinotecan via UGT1A1-Mediated Glucuronidation. Eur J Drug Metab Pharmacokinet 47, 353–361 (2022). https://doi.org/10.1007/s13318-021-00740-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-021-00740-x

Navigation