Skip to main content
Log in

Advanced In Vitro HepaRG Culture Systems for Xenobiotic Metabolism and Toxicity Characterization

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Several HepaRG three-dimensional (3D) in vitro model systems have been developed to improve the predictability of xenobiotic metabolism and toxicity. In this review, we present a detailed summary and critique of the performance of various HepaRG 3D models compared to the conventional 2D monolayer culture. HepaRG 3D models can be broadly categorized into (1) scaffold-free, (2) scaffold-based, and (3) bioartificial liver (BAL) models. With respect to the scaffold-free configurations, the hanging drop model closely mimics the normal physiological function and metabolic profile of the liver. The micromold model is suitable for high-throughput multiplexed assays and exhibits higher accuracy when predicting drug-induced liver toxicity risk in both acute and chronic culture. Scaffold- and BAL-based models also present improved precision and accuracy for hepatotoxic drug screening in addition to allowing improved model control to closely mimic physiological assay conditions. Overall, all 3D HepaRG models exhibit improved cellular function, metabolic activity, and toxicity screening ability compared to the conventional 2D monolayer culture. These improvements reported in 3D models may be due to a higher degree of differentiation and cell polarity. Nevertheless, the expression and functions of various phase II, phase III, and nuclear receptors need to be further characterized in these 3D models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andersson TB. Evolution of novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Basic Clin Pharmacol Toxicol. 2017;121(4):234–8. https://doi.org/10.1111/bcpt.12804.

    Article  CAS  PubMed  Google Scholar 

  2. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci USA. 2002;99(24):15655–60. https://doi.org/10.1073/pnas.232137699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cerec V, Glaise D, Garnier D, Morosan S, Turlin B, Drenou B, et al. Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology (Baltimore, MD). 2007;45(4):957–67. https://doi.org/10.1002/hep.21536.

    Article  CAS  Google Scholar 

  4. Parent R, Marion MJ, Furio L, Trepo C, Petit MA. Origin and characterization of a human bipotent liver progenitor cell line. Gastroenterology. 2004;126(4):1147–56.

    Article  PubMed  Google Scholar 

  5. Malinen MM, Kanninen LK, Corlu A, Isoniemi HM, Lou YR, Yliperttula ML, et al. Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials. 2014;35(19):5110–21. https://doi.org/10.1016/j.biomaterials.2014.03.020.

    Article  CAS  PubMed  Google Scholar 

  6. Hart SN, Li Y, Nakamoto K, Subileau EA, Steen D, Zhong XB. A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metab Dispos. 2010;38(6):988–94. https://doi.org/10.1124/dmd.109.031831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jennen DG, Magkoufopoulou C, Ketelslegers HB, van Herwijnen MH, Kleinjans JC, van Delft JH. Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010;115(1):66–79. https://doi.org/10.1093/toxsci/kfq026.

    Article  CAS  PubMed  Google Scholar 

  8. Rogue A, Lambert C, Josse R, Antherieu S, Spire C, Claude N, et al. Comparative gene expression profiles induced by PPARgamma and PPARalpha/gamma agonists in human hepatocytes. PLoS One. 2011;6(4):e18816. https://doi.org/10.1371/journal.pone.0018816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rogue A, Lambert C, Spire C, Claude N, Guillouzo A. Interindividual variability in gene expression profiles in human hepatocytes and comparison with HepaRG cells. Drug Metab Dispos. 2012;40(1):151–8. https://doi.org/10.1124/dmd.111.042028.

    Article  CAS  PubMed  Google Scholar 

  10. Antherieu S, Chesne C, Li R, Camus S, Lahoz A, Picazo L, et al. Stable expression, activity, and inducibility of cytochromes P450 in differentiated HepaRG cells. Drug Metab Dispos. 2010;38(3):516–25. https://doi.org/10.1124/dmd.109.030197.

    Article  CAS  PubMed  Google Scholar 

  11. Antherieu S, Chesne C, Li R, Guguen-Guillouzo C, Guillouzo A. Optimization of the HepaRG cell model for drug metabolism and toxicity studies. Toxicol In Vitro. 2012;26(8):1278–85. https://doi.org/10.1016/j.tiv.2012.05.008.

    Article  CAS  PubMed  Google Scholar 

  12. Guguen-Guillouzo C, Guillouzo A. General review on in vitro hepatocyte models and their applications. Methods Mol Biol (Clifton, NJ). 2010;640:1–40. https://doi.org/10.1007/978-1-60761-688-7_1.

    Article  CAS  Google Scholar 

  13. Zanelli U, Caradonna NP, Hallifax D, Turlizzi E, Houston JB. Comparison of cryopreserved HepaRG cells with cryopreserved human hepatocytes for prediction of clearance for 26 drugs. Drug Metab Dispos. 2012;40(1):104–10. https://doi.org/10.1124/dmd.111.042309.

    Article  CAS  PubMed  Google Scholar 

  14. Aninat C, Piton A, Glaise D, Le Charpentier T, Langouet S, Morel F, et al. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab Dispos. 2006;34(1):75–83. https://doi.org/10.1124/dmd.105.006759.

    Article  CAS  PubMed  Google Scholar 

  15. Kanebratt KP, Andersson TB. HepaRG cells as an in vitro model for evaluation of cytochrome P450 induction in humans. Drug Metab Dispos. 2008;36(1):137–45. https://doi.org/10.1124/dmd.107.017418.

    Article  CAS  PubMed  Google Scholar 

  16. Pilling M, Mills T, Nicholls G, et al. Affymetrix DMET PLUS genotyping technology: evaluation of cell lines and healthy volunteer samples. Abstract from: 9th International Society for the Study of Xenobiotics; 2010 Sept 4–8; Istanbul, Turkey.

  17. Turpeinen M, Tolonen A, Chesne C, Guillouzo A, Uusitalo J, Pelkonen O. Functional expression, inhibition and induction of CYP enzymes in HepaRG cells. Toxicol In Vitro. 2009;23(4):748–53. https://doi.org/10.1016/j.tiv.2009.03.008.

    Article  CAS  PubMed  Google Scholar 

  18. Kaneko A, Kato M, Endo C, Nakano K, Ishigai M, Takeda K. Prediction of clinical CYP3A4 induction using cryopreserved human hepatocytes. Xenobiotica. 2010;40(12):791–9. https://doi.org/10.3109/00498254.2010.517277.

  19. McGinnity DF, Zhang G, Kenny JR, Hamilton GA, Otmani S, Stams KR, et al. Evaluation of multiple in vitro systems for assessment of CYP3A4 induction in drug discovery: human hepatocytes, pregnane X receptor reporter gene, and Fa2 N-4 and HepaRG cells. Drug Metab Dispos. 2009;37(6):1259–68. https://doi.org/10.1124/dmd.109.026526.

    Article  CAS  PubMed  Google Scholar 

  20. Richter LH, Kaminski YR, Noor F, Meyer MR, Maurer HH. Metabolic fate of desomorphine elucidated using rat urine, pooled human liver preparations, and human hepatocyte cultures as well as its detectability using standard urine screening approaches. Anal Bioanal Chem. 2016;408(23):6283–94. https://doi.org/10.1007/s00216-016-9740-4.

    Article  CAS  PubMed  Google Scholar 

  21. Josse R, Aninat C, Glaise D, Dumont J, Fessard V, Morel F, et al. Long-term functional stability of human HepaRG hepatocytes and use for chronic toxicity and genotoxicity studies. Drug Metab Dispos. 2008;36(6):1111–8. https://doi.org/10.1124/dmd.107.019901.

    Article  CAS  PubMed  Google Scholar 

  22. Le Vee M, Jigorel E, Glaise D, Gripon P, Guguen-Guillouzo C, Fardel O. Functional expression of sinusoidal and canalicular hepatic drug transporters in the differentiated human hepatoma HepaRG cell line. Eur J Pharm Sci. 2006;28(1–2):109–17. https://doi.org/10.1016/j.ejps.2006.01.004.

  23. Le Vee M, Noel G, Jouan E, Stieger B, Fardel O. Polarized expression of drug transporters in differentiated human hepatoma HepaRG cells. Toxicol In Vitro. 2013;27(6):1979–86. https://doi.org/10.1016/j.tiv.2013.07.003.

    Article  CAS  PubMed  Google Scholar 

  24. Antherieu S, Rogue A, Fromenty B, Guillouzo A, Robin MA. Induction of vesicular steatosis by amiodarone and tetracycline is associated with up-regulation of lipogenic genes in HepaRG cells. Hepatology (Baltimore, MD). 2011;53(6):1895–905. https://doi.org/10.1002/hep.24290.

    Article  CAS  Google Scholar 

  25. Madec S, Cerec V, Plee-Gautier E, Antoun J, Glaise D, Salaun JP, et al. CYP4F3B expression is associated with differentiation of HepaRG human hepatocytes and unaffected by fatty acid overload. Drug Metab Dispos. 2011;39(10):1987–96. https://doi.org/10.1124/dmd.110.036848.

    Article  CAS  PubMed  Google Scholar 

  26. McGill MR, Jaeschke H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res. 2013;30(9):2174–87. https://doi.org/10.1007/s11095-013-1007-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McGill MR, Yan HM, Ramachandran A, Murray GJ, Rollins DE, Jaeschke H. HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology (Baltimore, MD). 2011;53(3):974–82. https://doi.org/10.1002/hep.24132.

    Article  CAS  Google Scholar 

  28. Michaut A, Le Guillou D, Moreau C, Bucher S, McGill MR, Martinais S, et al. A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: application to acetaminophen. Toxicol Appl Pharmacol. 2016;292:40–55. https://doi.org/10.1016/j.taap.2015.12.020.

    Article  CAS  PubMed  Google Scholar 

  29. Leite SB, Wilk-Zasadna I, Zaldivar JM, Airola E, Reis-Fernandes MA, Mennecozzi M, et al. Three-dimensional HepaRG model as an attractive tool for toxicity testing. Toxicol Sci. 2012;130(1):106–16. https://doi.org/10.1093/toxsci/kfs232.

    Article  CAS  PubMed  Google Scholar 

  30. Lambert CB, Spire C, Claude N, Guillouzo A. Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol Appl Pharmacol. 2009;234(3):345–60. https://doi.org/10.1016/j.taap.2008.11.008.

    Article  CAS  PubMed  Google Scholar 

  31. Andersson TB, Kanebratt KP, Kenna JG. The HepaRG cell line: a unique in vitro tool for understanding drug metabolism and toxicology in human. Expert Opin Drug Metab Toxicol. 2012;8(7):909–20. https://doi.org/10.1517/17425255.2012.685159.

    Article  CAS  PubMed  Google Scholar 

  32. Gunness P, Mueller D, Shevchenko V, Heinzle E, Ingelman-Sundberg M, Noor F. 3D organotypic cultures of human HepaRG cells: a tool for in vitro toxicity studies. Toxicol Sci. 2013;133(1):67–78. https://doi.org/10.1093/toxsci/kft021.

    Article  CAS  PubMed  Google Scholar 

  33. Higuchi Y, Kawai K, Kanaki T, Yamazaki H, Chesne C, Guguen-Guillouzo C, et al. Functional polymer-dependent 3D culture accelerates the differentiation of HepaRG cells into mature hepatocytes. Hepatol Res. 2016;46(10):1045–57. https://doi.org/10.1111/hepr.12644.

    Article  CAS  Google Scholar 

  34. Mueller D, Kramer L, Hoffmann E, Klein S, Noor F. 3D organotypic HepaRG cultures as in vitro model for acute and repeated dose toxicity studies. Toxicol In Vitro. 2014;28(1):104–12. https://doi.org/10.1016/j.tiv.2013.06.024.

  35. Takahashi Y, Hori Y, Yamamoto T, Urashima T, Ohara Y, Tanaka H. 3D spheroid cultures improve the metabolic gene expression profiles of HepaRG cells. Biosci Rep. 2015. https://doi.org/10.1042/bsr20150034.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Murayama N, Usui T, Slawny N, Chesne C, Yamazaki H. Human HepaRG cells can be cultured in hanging-drop plates for cytochrome P450 induction and function assays. Drug Metab Lett. 2015;9(1):3–7.

    Article  CAS  PubMed  Google Scholar 

  37. Ott LM, Ramachandran K, Stehno-Bittel L. An automated multiplexed hepatotoxicity and CYP induction assay using HepaRG cells in 2D and 3D. SLAS Discov Adv Life Sci R D. 2017;22(5):614–25. https://doi.org/10.1177/2472555217701058.

    Article  CAS  Google Scholar 

  38. Ramaiahgari SC, Waidyanatha S, Dixon D, DeVito MJ, Paules RS, Ferguson SS. Three-dimensional (3D) HepaRG spheroid model with physiologically relevant xenobiotic metabolism competence and hepatocyte functionality for liver toxicity screening. Toxicol Sci. 2017;160(1):189–90. https://doi.org/10.1093/toxsci/kfx194.

  39. Wang Z, Luo X, Anene-Nzelu C, Yu Y, Hong X, Singh NH, et al. HepaRG culture in tethered spheroids as an in vitro three-dimensional model for drug safety screening. J Appl Toxicol. 2015;35(8):909–17. https://doi.org/10.1002/jat.3090.

    Article  CAS  PubMed  Google Scholar 

  40. Otsuji TG, Bin J, Yoshimura A, Tomura M, Tateyama D, Minami I, et al. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Rep. 2014;2(5):746. https://doi.org/10.1016/j.stemcr.2014.04.013.

  41. Wang J, Chen F, Liu L, Qi C, Wang B, Yan X, et al. Engineering EMT using 3D micro-scaffold to promote hepatic functions for drug hepatotoxicity evaluation. Biomaterials. 2016;91:11–22. https://doi.org/10.1016/j.biomaterials.2016.03.001.

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Zhang X, Zhao S, Wang J, Liu G, Du Y. Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment. Lab Chip. 2014;14(3):471–81. https://doi.org/10.1039/c3lc51103k.

    Article  CAS  PubMed  Google Scholar 

  43. Hoekstra R, Nibourg GA, van der Hoeven TV, Ackermans MT, Hakvoort TB, van Gulik TM, et al. The HepaRG cell line is suitable for bioartificial liver application. Int J Biochem Cell Biol. 2011;43(10):1483–9. https://doi.org/10.1016/j.biocel.2011.06.011.

    Article  CAS  PubMed  Google Scholar 

  44. Hoekstra R, Nibourg GA, van der Hoeven TV, Plomer G, Seppen J, Ackermans MT, et al. Phase 1 and phase 2 drug metabolism and bile acid production of HepaRG cells in a bioartificial liver in absence of dimethyl sulfoxide. Drug Metab Dispos. 2013;41(3):562–7. https://doi.org/10.1124/dmd.112.049098.

    Article  CAS  PubMed  Google Scholar 

  45. Leite SB, Teixeira AP, Miranda JP, Tostoes RM, Clemente JJ, Sousa MF, et al. Merging bioreactor technology with 3D hepatocyte-fibroblast culturing approaches: improved in vitro models for toxicological applications. Toxicol In Vitro. 2011;25(4):825–32. https://doi.org/10.1016/j.tiv.2011.02.002.

  46. Tostoes RM, Leite SB, Serra M, Jensen J, Bjorquist P, Carrondo MJ, et al. Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology (Baltimore, MD). 2012;55(4):1227–36. https://doi.org/10.1002/hep.24760.

    Article  CAS  Google Scholar 

  47. Serra M, Leite SB, Brito C, Costa J, Carrondo MJ, Alves PM. Novel culture strategy for human stem cell proliferation and neuronal differentiation. J Neurosci Res. 2007;85(16):3557–66. https://doi.org/10.1002/jnr.21451.

    Article  CAS  PubMed  Google Scholar 

  48. Nibourg GA, Hoekstra R, van der Hoeven TV, Ackermans MT, Hakvoort TB, van Gulik TM, et al. Increased hepatic functionality of the human hepatoma cell line HepaRG cultured in the AMC bioreactor. Int J Biochem Cell Biol. 2013;45(8):1860–8. https://doi.org/10.1016/j.biocel.2013.05.038.

    Article  CAS  PubMed  Google Scholar 

  49. Rebelo SP, Costa R, Estrada M, Shevchenko V, Brito C, Alves PM. HepaRG microencapsulated spheroids in DMSO-free culture: novel culturing approaches for enhanced xenobiotic and biosynthetic metabolism. Arch Toxicol. 2015;89(8):1347–58. https://doi.org/10.1007/s00204-014-1320-9.

    Article  CAS  PubMed  Google Scholar 

  50. Adam AAA, van Wenum M, van der Mark VA, Jongejan A, Moerland PD, Houtkooper RH, et al. AMC-bio-artificial liver culturing enhances mitochondrial biogenesis in human liver cell lines: the role of oxygen, medium perfusion and 3D configuration. Mitochondrion. 2018;39:30–42. https://doi.org/10.1016/j.mito.2017.08.011.

    Article  CAS  PubMed  Google Scholar 

  51. Nibourg GA, Chamuleau RA, van Gulik TM, Hoekstra R. Proliferative human cell sources applied as biocomponent in bioartificial livers: a review. Expert Opin Biol Ther. 2012;12(7):905–21. https://doi.org/10.1517/14712598.2012.685714.

    Article  CAS  PubMed  Google Scholar 

  52. Poyck PP, Hoekstra R, van Wijk AC, Attanasio C, Calise F, Chamuleau RA, et al. Functional and morphological comparison of three primary liver cell types cultured in the AMC bioartificial liver. Liver Transpl. 2007;13(4):589–98. https://doi.org/10.1002/lt.21090.

  53. Su T, Waxman DJ. Impact of dimethyl sulfoxide on expression of nuclear receptors and drug-inducible cytochromes P450 in primary rat hepatocytes. Arch Biochem Biophys. 2004;424(2):226–34. https://doi.org/10.1016/j.abb.2004.02.008.

    Article  CAS  PubMed  Google Scholar 

  54. Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov. 2005;4(6):489–99. https://doi.org/10.1038/nrd1750.

    Article  CAS  PubMed  Google Scholar 

  55. Lin C, Khetani SR. Advances in engineered liver models for investigating drug-induced liver injury. Biomed Res Int. 2016;2016:1829148. https://doi.org/10.1155/2016/1829148.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013;87(8):1315–530. https://doi.org/10.1007/s00204-013-1078-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tolosa L, Gomez-Lechon MJ, Jimenez N, Hervas D, Jover R, Donato MT. Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis. Toxicol Appl Pharmacol. 2016;302:1–9. https://doi.org/10.1016/j.taap.2016.04.007.

    Article  CAS  PubMed  Google Scholar 

  58. Fey SJ, Wrzesinski K. Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicol Sci. 2012;127(2):403–11. https://doi.org/10.1093/toxsci/kfs122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Achilli TM, McCalla S, Meyer J, Tripathi A, Morgan JR. Multilayer spheroids to quantify drug uptake and diffusion in 3D. Mol Pharm. 2014;11(7):2071–81. https://doi.org/10.1021/mp500002y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8(10):839–45. https://doi.org/10.1038/nrm2236.

    Article  CAS  PubMed  Google Scholar 

  61. Ott LM, Ramachandran K, Stehno-Bittel L. An automated multiplexed hepatotoxicity and CYP induction assay using HepaRG cells in 2D and 3D. SLAS Discov. 2017;22(5):614–25. https://doi.org/10.1177/2472555217701058.

    Article  CAS  PubMed  Google Scholar 

  62. Zaher H, Buters JT, Ward JM, Bruno MK, Lucas AM, Stern ST, et al. Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice. Toxicol Appl Pharmacol. 1998;152(1):193–9. https://doi.org/10.1006/taap.1998.8501.

    Article  CAS  PubMed  Google Scholar 

  63. Roy KR, Reddy GV, Maitreyi L, Agarwal S, Achari C, Vali S, et al. Celecoxib inhibits MDR1 expression through COX-2-dependent mechanism in human hepatocellular carcinoma (HepG2) cell line. Cancer Chemother Pharmacol. 2010;65(5):903–11. https://doi.org/10.1007/s00280-009-1097-3.

    Article  CAS  PubMed  Google Scholar 

  64. Goodwin B, Moore LB, Stoltz CM, McKee DD, Kliewer SA. Regulation of the human CYP2B6 gene by the nuclear pregnane X receptor. Mol Pharmacol. 2001;60(3):427–31.

    CAS  PubMed  Google Scholar 

  65. Zhang JG, Ho T, Callendrello AL, Clark RJ, Santone EA, Kinsman S, et al. Evaluation of calibration curve-based approaches to predict clinical inducers and noninducers of CYP3A4 with plated human hepatocytes. Drug Metab Dispos Biol Fate Chem. 2014;42(9):1379–91. https://doi.org/10.1124/dmd.114.058602.

    Article  CAS  PubMed  Google Scholar 

  66. NIH. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda: National Institutes of Health, U.S. Department of Health & Human Services; 2018. https://livertox.nih.gov/. Accessed 13 Aug 2018.

  67. Borges NC, Rezende VM, Santana JM, Moreira RP, Moreira RF, Moreno P, et al. Chlorpromazine quantification in human plasma by UPLC-electrospray ionization tandem mass spectrometry. Application to a comparative pharmacokinetic study. J Chromatogr B. 2011;879(31):3728–34. https://doi.org/10.1016/j.jchromb.2011.10.020.

  68. Huang YC, Colaizzi JL, Bierman RH, Woestenborghs R, Heykants J. Pharmacokinetics and dose proportionality of ketoconazole in normal volunteers. Antimicrob Agents Chemother. 1986;30(2):206–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bailey G, Mata J, Bench G, et al. Low dose aflatoxin B1 toxicokinetics and intervention in human volunteers: a pilot study. Cancer Res. 2007:67(9 Suppl):1665–1665.

  70. Nunez DA, Schiaffino S, Roldán EJ. Comparison of two formulations of sodium divalproate plasma concentrations after a single 500 mg oral dose in healthy subjects, and stochastic sub-analysis of the individual “clinical perceptible” levels. J Bioequiv Availab. 2013;5:4.

    Google Scholar 

  71. Tomida T, Okamura H, Yokoi T, Konno Y. A modified multiparametric assay using HepaRG cells for predicting the degree of drug-induced liver injury risk. J Appl Toxicol. 2017;37(3):382–90. https://doi.org/10.1002/jat.3371.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony K. L. Kiang.

Ethics declarations

Funding

The authors did not receive any funding for this review.

Conflict of interest

MNA, MWA, YR, MD, and TK declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.N., Asghar, M.W., Rong, Y. et al. Advanced In Vitro HepaRG Culture Systems for Xenobiotic Metabolism and Toxicity Characterization. Eur J Drug Metab Pharmacokinet 44, 437–458 (2019). https://doi.org/10.1007/s13318-018-0533-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-018-0533-3

Navigation