Skip to main content
Log in

Preclinical Pharmacokinetics and Pharmacodynamics of Pinometostat (EPZ-5676), a First-in-Class, Small Molecule S-Adenosyl Methionine Competitive Inhibitor of DOT1L

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Acute leukemias bearing mixed lineage leukemia (MLL) rearrangements are aggressive diseases characterized by a poor overall prognosis despite multi-agent chemotherapy. Aberrant fusion proteins involving the MLL histone methyltransferase (HMT) lead to recruitment of DOT1L, to a multi-protein complex resulting in aberrant methylation of histone H3 lysine 79 at MLL target genes, and ultimately enhanced expression of critical genes for hematopoietic differentiation, including HOXA9 and MEIS1, and as such defines the established mechanism for leukemogenesis in MLL-rearrangement (MLL-r) leukemias. Pinometostat is a first-in-class, small molecule inhibitor of DOT1L with sub-nanomolar affinity and >37,000 fold selectivity against non-MLL HMTs, and was the first member of the novel HMT inhibitor class to enter Phase 1 clinical trials in both adult and pediatric MLL-r leukemia patients. In this article, the preclinical pharmacokinetics/pharmacodynamics and drug disposition of pinometostat are reviewed including discussion of how these data were used to inform early clinical studies, and how they translated to the clinical experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hess JL. MLL: a histone methyltransferase disrupted in leukemia. Trends Mol Med. 2004;10:500–7.

    Article  CAS  PubMed  Google Scholar 

  2. Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7:823–33.

    Article  CAS  PubMed  Google Scholar 

  3. Muntean AG, Hess JL. The pathogenesis of mixed-lineage leukemia. Annu Rev Pathol. 2012;7:283–301.

    Article  CAS  PubMed  Google Scholar 

  4. Tamai H, Inokuchi K. 11q23/MLL acute leukemia: update of clinical aspects. J Clin Exp Hematop. 2010;50:91–8.

    Article  PubMed  Google Scholar 

  5. Zhang W, Xia X, Reisenauer MR, Hemenway CS, Kone BC. Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and repression of ENaCα in an aldosterone-sensitive manner. J Biol Chem. 2006;281:18059–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buttner N, Johnsen S, Kugler S, Vogel T. Af9/Mllt3 interferes with Tbr1 expression through epigenetic modification of histone H3K79 during development of the cerebral cortex. Proc Natl Acad Sci USA. 2010;107:7042–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Biswas D, Milne TA, Basrur V, et al. Function of leukemogenic mixed lineage leukemia 1 (MLL) fusion proteins through distinct partner protein complexes. Proc Natl Acad Sci USA. 2011;108:15751–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bernt KM, Zhu N, Sinha AU, et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 2011;20:66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Okada Y, Feng Q, Lin Y, et al. hDOT1L links histone methylation to leukemogenesis. Cell. 2005;121:167–78.

    Article  CAS  PubMed  Google Scholar 

  10. Mueller D, Bach C, Zeisig D, et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood. 2007;110:4445–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krivtsov AV, Feng Z, Lemieux ME, et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell. 2008;14:355–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yokoyama A, Lin M, Naresh A, Kitabayashi I, Cleary ML. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell. 2010;17:198–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen L, Deshpande AJ, Banka D, et al. Abrogation of MLL-AF10 and CALM-AF10 mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l. Leukemia. 2012;27:813–22.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Daigle SR, Olhava EJ, Therkelsen CA, et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell. 2011;20:53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu W, Chory EJ, Wernimont AK, et al. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat Commun. 2012;3:1288.

    Article  PubMed  Google Scholar 

  16. Deshpande AJ, Chen L, Fazio M, et al. Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood. 2013;121:2533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Daigle SR, Olhava EJ, Therkelsen CA, Basavapathruni A, Jin L, Boriack-Sjodin PA, Allain CJ, Klaus CR, Raimondi A, Scott MP, Waters NJ, Chesworth R, Moyer MP, Copeland RA, Richon VM, Pollock RM. Potent inhibition of DOT1L as treatment for MLL-fusion leukemia. Blood. 2013;122:1017–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chesworth R, Olhava EJ, Kuntz KW, Basavapathruni A, Majer CR, Sneeringer CJ, Allain CJ, Raimondi A, Klaus CR, Scott MP, Therkelsen CA, Daigle SR, Pollock RM, Richon VM, Copeland RA, Boriack-Sjodin PA, Jin L, Waters NJ, Arnold L, Patane M, Pearson P, Sacks J, Moyer MP. From protein to candidate: discovery of EPZ-5676, a potent and selective inhibitor of the histone methyltransferase DOT1L. Abstracts of papers, 246th ACS national meeting and exposition, Indianapolis, IN, United States, 8–12 Sep 2013.

  19. Sweet SM, Li M, Thomas PM, Durbin KR, Kelleher NL. Kinetics of re-establishing H3K79 methylation marks in global human chromatin. J Biol Chem. 2010;285:32778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS, Garcia BA. In vivo residue-specific histone methylation dynamics. J Biol Chem. 2010;285:3341–50.

    Article  CAS  PubMed  Google Scholar 

  21. Basavapathruni A, Olhava EJ, Daigle SR, Therkelsen CA, Jin L, Boriack-Sjodin PA, Allain CJ, Klaus CR, Raimondi A, Scott MP, Dovletoglou A, Richon VM, Pollock RM, Copeland RA, Moyer MP, Chesworth R, Pearson PG, Waters NJ. Nonclinical pharmacokinetics and metabolism of EPZ-5676, a novel DOT1L histone methyltransferase inhibitor. Biopharm Drug Dispos. 2014;35:237–52.

    Article  CAS  PubMed  Google Scholar 

  22. Rioux N, Waters NJ. Physiologically-based pharmacokinetic modeling in pediatric oncology drug development. Drug Metab Dispos. 2016;44:934–43.

    Article  CAS  PubMed  Google Scholar 

  23. Smith SA, Gagnon S, Waters NJ. Mechanistic investigations into the species differences in pinometostat clearance: impact of binding to alpha-1-acid glycoprotein and permeability-limited hepatic uptake. Xenobiotica 2016;47:185–193.

  24. Waters NJ, Smith SA, Olhava EJ, et al. Metabolism and disposition of the DOT1L inhibitor, pinometostat (EPZ-5676), in rat, dog and human. Cancer Chemother Pharmacol. 2016;77:43–62.

    Article  CAS  PubMed  Google Scholar 

  25. Prakash C, Wang W, O’Connell T, Johnson KA. CYP2C8- and CYP3A-mediated C-demethylation of (3-{[(4-tertButylbenzyl)-(pyridine-3-sulfonyl)-amino]-methyl}-phenoxy)-acetic acid (CP-533,536), an EP2 receptor-selective prostaglandin E2 agonist: characterization of metabolites by high-resolution liquid chromatography–tandem mass spectrometry and liquid chromatography/mass spectrometry–nuclear magnetic resonance. Drug Metab Dispos. 2008;36:2093–103.

    Article  CAS  PubMed  Google Scholar 

  26. Wang TP, Lampen JO. The cleavage of adenosine, cytidine and xanthosine by Lactobacillus pentosus. J Biol Chem. 1951;192:339–47.

    CAS  PubMed  Google Scholar 

  27. Wajima T, Yano Y, Fukumura K, et al. Prediction of human pharmacokinetic profile in animal scale up based on normalizing time course profiles. J Pharm Sci. 2004;93:1890–900.

    Article  CAS  PubMed  Google Scholar 

  28. Mahmood I, Boxenbaum H. Vertical allometry: fact or fiction? Reg Toxicol Pharmacol. 2014;68:468–74.

    Article  Google Scholar 

  29. Fournier T, Medjoubi NN, Porquet D. Alpha-1-acid glycoprotein. Biochim Biophys Acta. 2000;1482:157–71.

    Article  CAS  PubMed  Google Scholar 

  30. Butler P, Frost K, Barnes K, et al. Impact of blood collection method on human plasma protein binding for compounds preferentially binding to α1-acid glycoprotein. Poster presented at the ISSX 20th North American meeting; 2015 Oct 18–22; Orlando, FL, USA.

  31. Waters NJ, Thomson B, Gardner I, Johnson TN, Olhava EJ, Pollock RM, Legler M, Copeland RA, Hedrick E. Pediatric dose determinations for the Phase I study of the DOT1L inhibitor, EPZ-5676, in MLL-r acute leukemia: leveraging early clinical data in adults through physiologically-based pharmacokinetic modeling. Blood. 2014;124:3619.

    Google Scholar 

  32. Stein E, Garcia-Manero G, Rizzieri D, Tibes R, Berdeja J, Jongen-Lavrencic M, Altman J, Döhner H, Thomson B, Daigle S, Blakemore SJ, Fine G, Waters NJ, Krivstov A, Koche R, Armstrong S, Ho PT, Löwenberg B, Tallman M. A phase 1 study of the DOT1L inhibitor pinometostat, EPZ-5676, in advanced leukemia: safety, activity and evidence of target inhibition. Blood. 2015;126:2547.

    Google Scholar 

  33. Shukla N, Wetmore C, O’Brien MM, Silverman LB, Brown P, Cooper TM, Thomson B, Blakemore SJ, Daigle S, Suttle B, Waters NJ, Krivstov AV, Armstrong SA, Ho PT, Gore L. Final Report of Phase 1 Study of the DOT1L Inhibitor, Pinometostat (EPZ-5676), in Children with Relapsed or Refractory MLL-r Acute Leukemia. Blood. 2016;128:2780.

    Google Scholar 

  34. Wong H, Choo EF, Alicke B, Ding X, La H, McNamara E, Theil FP, Tibbitts J, Friedman LS, Hop CE, Gould SE. Antitumor activity of targeted and cytotoxic agents in murine subcutaneous tumor models correlates with clinical response. Clin Cancer Res. 2012;18:3846–55.

    Article  CAS  PubMed  Google Scholar 

  35. Klaus CR, Iwanowicz D, Johnston D, Campbell CA, Smith JJ, Moyer MP, Copeland RA, Olhava EJ, Scott MP, Pollock RM, Daigle SR, Raimondi A. DOT1L inhibitor EPZ-5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents in MLL-rearranged leukemia cells. J Pharmacol Exp Ther. 2014;350:646–56.

    Article  PubMed  Google Scholar 

  36. Daigle S, McDonald A, Thomson TM, Drubin DA, Maria M, Carson A, Patay B, Keats J, Klaus C, Raimondi A, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja J, Stein EM, Thomson B, Blakemore SJ. Identification of biomarkers and pathways associated with response to the DOT1L inhibitor Pinometostat (EPZ-5676) in MLL-r leukemia. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr C12.

  37. Raimondi A, Klaus CR, Keats JA, Daigle SR, Copeland RA, DiMartino J, Smith JJ, Blakemore SJ. Pinometostat (EPZ-5676) enhances the antiproliferative activity of MAP kinase pathway inhibitors in MLL-rearranged leukemia cell lines. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr B82.

  38. Waters NJ, Daigle SR, Rehlaender BN, Basavapathruni A, Campbell CT, Jensen TB, Truitt BF, Olhava EJ, Pollock RM, Stickland KA, Dovletoglou A. Exploring drug delivery for the DOT1L inhibitor pinometostat (EPZ-5676): subcutaneous administration as an alternative to continuous iv infusion, in the pursuit of an epigenetic target. J Control Release. 2015;220:758–65.

    Article  CAS  PubMed  Google Scholar 

  39. Kühn MW, Song E, Feng Z, Sinha A, Chen CW, Deshpande AJ, Cusan M, Farnoud N, Mupo A, Grove C, Koche R, Bradner JE, de Stanchina E, Vassiliou GS, Hoshii T, Armstrong SA. Targeting Chromatin Regulators Inhibits Leukemogenic Gene Expression in NPM1 Mutant Leukemia. Cancer Discov. 2016;6:1166–81.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rau RE, Rodriguez BA, Luo M, Jeong M, Rosen A, Rogers JH, Campbell CT, Daigle SR, Deng L, Song Y, Sweet S, Chevassut T, Andreeff M, Kornblau SM, Li W, Goodell MA. DOT1L as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid leukemia. Blood. 2016;128:971–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee JY, Kong G. DOT1L: a new therapeutic target for aggressive breast cancer. Oncotarget. 2015;6:30451–2.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Scheufler C, Mobitz H, Gaul C, Ragot C, Be C, Fernandez C, Beyer KS, Tiedt R, Stauffer F. Optimization of a fragment-based screening hit toward potent DOT1L inhibitors interacting in an induced binding pocket. ACS Med Chem Lett. 2016;7:730–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen C, Zhu H, Stauffer F, Caravatti G, Vollmer S, Machauer R, Holzer P, Mobitz H, Scheufler C, Klumpp M, et al. Discovery of novel Dot1L inhibitors through a structure-based fragmentation approach. ACS Med Chem Lett. 2016;7:735–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks Epizyme colleagues, clinical investigators, and their teams and, most importantly, the patients and families who participated in the studies reported herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel J. Waters.

Ethics declarations

Funding

No source of funding.

Conflicts of interest

The author is a former employee of Epizyme and holds stock in Epizyme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waters, N.J. Preclinical Pharmacokinetics and Pharmacodynamics of Pinometostat (EPZ-5676), a First-in-Class, Small Molecule S-Adenosyl Methionine Competitive Inhibitor of DOT1L. Eur J Drug Metab Pharmacokinet 42, 891–901 (2017). https://doi.org/10.1007/s13318-017-0404-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-017-0404-3

Keywords

Navigation