Skip to main content
Log in

Inhibitory Effects of Triptolide on Human Liver Cytochrome P450 Enzymes and P-Glycoprotein

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Triptolide is an active component derived from Tripterygium wilfordii and it possesses numerous pharmacological activities. However, it remains unclear how triptolide influences the activity of human liver cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp).

Methods

In this study, the inhibitory effects of triptolide on the eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19, and 2C8) were investigated in vitro using human liver microsomes (HLMs), and the effects of triptolide on the activity of P-gp were investigated using a rhodamine-123 uptake assay.

Results

The results showed that triptolide inhibited the activity of CYP1A2 and CYP3A4, with 50 % inhibitory concentration (IC50) values of 14.18 and 8.36 μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that triptolide was not only a non-competitive inhibitor of CYP1A2, but also a competitive inhibitor of CYP3A4, with inhibition constant (K i) values of 7.32 and 5.67 μM, respectively. In addition, triptolide is a time-dependent inhibitor for CYP1A2, and the concentration at 50 % maximum inactivation (K I) and maximum inactivation (K inact) values were 286.5 μM and 0.024 min−1, respectively. The rhodamine-123 uptake assay showed that triptolide could not affect the activity of P-gp.

Conclusions

The in vitro studies of triptolide with CYP isoforms and P-gp indicate that triptolide has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP1A2 and CYP3A4. Further clinical studies are needed to evaluate the significance of this interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wei D, Huang Z. Anti-inflammatory effects of triptolide in LPS-induced acute lung injury in mice. Inflammation. 2014;37:1307–16.

    Article  CAS  PubMed  Google Scholar 

  2. Li XJ, Jiang ZZ, Zhang LY. Triptolide: progress on research in pharmacodynamics and toxicology. J Ethnopharmacol. 2014;155:67–79.

    Article  CAS  PubMed  Google Scholar 

  3. Grzegorzewska AE, Frankiewicz D, Breborowicz D, Matlawska I, Bylka W. Disseminated cutaneous Kaposi sarcoma in a patient receiving triptolide/tripdiolide for rheumatoid arthritis. Med Sci Monit. 2012;18:CS67–71.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu C, Zhang Y, Kong X, Zhu L, Pang J, Xu Y, et al. Triptolide prevents bone destruction in the collagen-induced arthritis model of rheumatoid arthritis by targeting RANKL/RANK/OPG signal pathway. Evid Based Complement Altern Med. 2013;2013:626038.

    Google Scholar 

  5. Park B. Triptolide, a diterpene, inhibits osteoclastogenesis, induced by RANKL signaling and human cancer cells. Biochimie. 2014;105:129–36.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou J, Xi C, Wang W, Fu X, Jinqiang L, Qiu Y, et al. Triptolide-induced oxidative stress involved with Nrf2 contribute to cardiomyocyte apoptosis through mitochondrial dependent pathways. Toxicol Lett. 2014;230:454–66.

    Article  CAS  PubMed  Google Scholar 

  7. Chen Z, Sangwan V, Banerjee S, Chugh R, Dudeja V, Vickers SM, et al. Triptolide sensitizes pancreatic cancer cells to TRAIL-induced activation of the death receptor pathway. Cancer Lett. 2014;348:156–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol. 1992;22:1–21.

    Article  CAS  PubMed  Google Scholar 

  9. Yan Z, Caldwell GW. Metabolism profiling, and cytochrome P450 inhibition and induction in drug discovery. Curr Top Med Chem. 2001;1:403–25.

    Article  CAS  PubMed  Google Scholar 

  10. Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today. 2001;6:357–66.

    Article  CAS  PubMed  Google Scholar 

  11. Qi XY, Liang SC, Ge GB, Liu Y, Dong PP, Zhang JW, et al. Inhibitory effects of sanguinarine on human liver cytochrome P450 enzymes. Food Chem Toxicol. 2013;56:392–7.

    Article  CAS  PubMed  Google Scholar 

  12. Meng Q, Liu K. Pharmacokinetic interactions between herbal medicines and prescribed drugs: focus on drug metabolic enzymes and transporters. Curr Drug Metab. 2014;15:791–807.

    Article  CAS  PubMed  Google Scholar 

  13. Pirotta M, Willis K, Carter M, Forsdike K, Newton D, Gunn J. ‘Less like a drug than a drug’: the use of St John’s wort among people who self-identify as having depression and/or anxiety symptoms. Complement Ther Med. 2014;22:870–6.

    Article  PubMed  Google Scholar 

  14. Wang ZY, Chen M, Zhu LL, Yu LS, Zeng S, Xiang MX, et al. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Ther Clin Risk Manag. 2015;11:449–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Unger M. Pharmacokinetic drug interactions involving Ginkgo biloba. Drug Metab Rev. 2013;45:353–85.

    Article  CAS  PubMed  Google Scholar 

  16. Binkhathlan Z, Lavasanifar A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: current status and future perspectives. Curr Cancer Drug Targets. 2013;13:326–46.

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi R, Ma S, Yue Q, Kim-Kang H, Yi Y, Lyssikatos JP, et al. Dose-dependent exposure and metabolism of GNE-892, a beta-secretase inhibitor, in monkeys: contributions by P450, AO, and P-gp. Eur J Drug Metab Pharmacokinet. 2015;40:171–85.

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen MA, Staubach P, Wolffram S, Langguth P. Effect of single-dose and short-term administration of quercetin on the pharmacokinetics of talinolol in humans—implications for the evaluation of transporter-mediated flavonoid-drug interactions. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2014;61:54–60.

    CAS  Google Scholar 

  19. Li W, Liu Y, He YQ, Zhang JW, Gao Y, Ge GB, et al. Characterization of triptolide hydroxylation by cytochrome P450 in human and rat liver microsomes. Xenobiotica. 2008;38:1551–65.

    Article  CAS  PubMed  Google Scholar 

  20. Liang Y, Zhou Y, Zhang J, Liu Y, Guan T, Wang Y, et al. In vitro to in vivo evidence of the inhibitor characteristics of Schisandra lignans toward P-glycoprotein. Phytomedicine. 2013;20:1030–8.

    Article  CAS  PubMed  Google Scholar 

  21. Gong X, Chen Y, Wu Y. Absorption and metabolism characteristics of triptolide as determined by a sensitive and reliable LC-MS/MS method. Molecules (Basel, Switzerland). 2015;20:8928–40.

    Article  CAS  Google Scholar 

  22. Zhang Y, Li J, Lei X, Zhang T, Liu G, Yang M, et al. Influence of verapamil on pharmacokinetics of triptolide in rats. Eur J Drug Metab Pharmacokinet. 2015. doi:10.1007/s13318-015-0275-4.

  23. Zhang JW, Liu Y, Cheng J, Li W, Ma H, Liu HT, et al. Inhibition of human liver cytochrome P450 by star fruit juice. J Pharm Pharm Sci. 2007;10:496–503.

    Article  PubMed  Google Scholar 

  24. Nabekura T, Yamaki T, Kitagawa S. Effects of chemopreventive citrus phytochemicals on human P-glycoprotein and multidrug resistance protein 1. Eur J Pharmacol. 2008;600:45–9.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou S, Chan E, Li SC, Huang M, Chen X, Li X, et al. Predicting pharmacokinetic herb-drug interactions. Drug Metabol Drug Interact. 2004;20:143–58.

    Article  CAS  PubMed  Google Scholar 

  26. Hu X, Huang W, Yang Y. Cytochrome P450 isoenzymes in rat and human liver microsomes associate with the metabolism of total coumarins in Fructus Cnidii. Eur J Drug Metab Pharmacokinet. 2015;40:373–7.

    Article  CAS  PubMed  Google Scholar 

  27. Liu T, Qian G, Wang W, Zhang Y. Molecular docking to understand the metabolic behavior of GNF-351 by CYP3A4 and its potential drug-drug interaction with ketoconazole. Eur J Drug Metab Pharmacokinet. 2015;40:235–8.

    Article  CAS  PubMed  Google Scholar 

  28. Lee SY, Lee JY, Kang W, Kwon KI, Park SK, Oh SJ, et al. Cytochrome P450-mediated herb-drug interaction potential of Galgeun-tang. Food Chem Toxicol. 2013;51:343–9.

    Article  CAS  PubMed  Google Scholar 

  29. Shimada T, Mimura M, Inoue K, Nakamura S, Oda H, Ohmori S, et al. Cytochrome P450-dependent drug oxidation activities in liver microsomes of various animal species including rats, guinea pigs, dogs, monkeys, and humans. Arch Toxicol. 1997;71:401–8.

    Article  CAS  PubMed  Google Scholar 

  30. Singh AP, Pant MC, Ruwali M, Shah PP, Prasad R, Mathur N, et al. Polymorphism in cytochrome P450 1A2 and their interaction with risk factors in determining risk of squamous cell lung carcinoma in men. Cancer Biomark Sect A Dis Markers. 2010;8:351–9.

    Article  CAS  Google Scholar 

  31. Wang B, Zhou SF. Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development. Curr Med Chem. 2009;16:4066–218.

    Article  CAS  PubMed  Google Scholar 

  32. Jeong HU, Kong TY, Kwon SS, Hong SW, Yeon SH, Choi JH, et al. Effect of honokiol on cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in human liver microsomes. Molecules (Basel, Switzerland). 2013;18:10681–93.

    Article  CAS  Google Scholar 

  33. Pandit S, Mukherjee PK, Ponnusankar S, Venkatesh M, Srikanth N. Metabolism mediated interaction of alpha-asarone and Acorus calamus with CYP3A4 and CYP2D6. Fitoterapia. 2011;82:369–74.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou SF. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. 2008;9:310–22.

    Article  CAS  PubMed  Google Scholar 

  35. Ericsson T, Sundell J, Torkelsson A, Hoffmann KJ, Ashton M. Effects of artemisinin antimalarials on Cytochrome P450 enzymes in vitro using recombinant enzymes and human liver microsomes: potential implications for combination therapies. Xenobiotica. 2014;44:615–26.

    Article  CAS  PubMed  Google Scholar 

  36. Ito K, Iwatsubo T, Kanamitsu S, Nakajima Y, Sugiyama Y. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol. 1998;38:461–99.

    Article  CAS  PubMed  Google Scholar 

  37. Shao F, Wang G, Xie H, Zhu X, Sun J, Jiye A. Pharmacokinetic study of triptolide, a constituent of immunosuppressive chinese herb medicine, in rats. Biol Pharm Bull. 2007;30:702–7.

    Article  CAS  PubMed  Google Scholar 

  38. Konig J, Muller F, Fromm MF. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev. 2013;65:944–66.

    Article  PubMed  Google Scholar 

  39. Ekins S, Clark AM, Wright SH. Making transporter models for drug-drug interaction prediction mobile. Drug Metab Dispos. 2015;43:1642–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li CZ, Xing GZ, Maeda K, Wu CY, Gong LK, Sugiyama Y, et al. The role of breast cancer resistance protein (Bcrp/Abcg2) in triptolide-induced testis toxicity. Toxicol Res. 2015;36:1260–8.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by “The Pilot Project of Fujian Province Technology Hall (2015Y0013)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Rui.

Ethics declarations

Conflict of interest

HZ, GY and HR have declared no conflict of interest.

Additional information

H. Zhang and G. Ya equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ya, G. & Rui, H. Inhibitory Effects of Triptolide on Human Liver Cytochrome P450 Enzymes and P-Glycoprotein. Eur J Drug Metab Pharmacokinet 42, 89–98 (2017). https://doi.org/10.1007/s13318-016-0323-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-016-0323-8

Keywords

Navigation