Skip to main content
Log in

Chronopharmacokinetics of Erlotinib and Circadian Rhythms of Related Metabolic Enzymes in Lewis Tumor-Bearing Mice

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objective

The purpose of the current study was to investigate the effect of the dosing time on the pharmacokinetics of erlotinib and the circadian rhythms of the metabolism enzymes in tumor-bearing mice.

Methods

Female C57BL mice were randomly assigned to six groups. Erlotinib was orally administrated to the mice in each group at six different times of day. The plasma concentration of erlotinib was determined through a high-performance liquid-chromatographic assay, and the total mRNA was extracted from liver tissues to determine the expression of the mRNA of the related drug metabolism enzymes by qRT-PCR.

Results

The results indicated that AUC0–24 h and MRT0–24 h were the lowest in the 20:00 group (P < 0.01). T max of the 13 HALO (hour after light onset), 17 HALO and 21 HALO groups was higher than that of the 1 HALO and 5 HALO groups (P < 0.01). CL of the light-phase groups was lower than that of the dark-phase groups (P < 0.01). The peak value of C max appeared in the 5 HALO group (P < 0.01). The mRNA levels of Cyp3a11, Cyp3a13 and Cyp1a2 were generally higher during the afternoon and the dark phase.

Conclusion

Circadian rhythm plays a critical role in the pharmacokinetics of erlotinib in mice, and the mechanisms may be attributed to gene expression rhythms of drug-metabolizing enzymes in liver tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hastings MH, Reddy AB, Maywood ES. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci. 2003;4(8):649–61.

    Article  CAS  PubMed  Google Scholar 

  2. Martin RJ, Banks-Schlegel S. Chronobiology of asthma. Am J Respir Crit Care Med. 1998;158(3):1002–7.

    Article  CAS  PubMed  Google Scholar 

  3. Smolensky MH, Lemmer B, Reinberg AE. Chronobiology and chronotherapy of allergic rhinitis and bronchial asthma. Adv Drug Deliv Rev. 2007;59(9–10):852–82.

    Article  CAS  PubMed  Google Scholar 

  4. Smolensky MH, Reinberg A, Labrecque G. Twenty-four hour pattern in symptom intensity of viral and allergic rhinitis: treatment implications. J Allergy Clin Immuno. 1995;95(5 Pt 2):1084–96.

    Article  CAS  Google Scholar 

  5. Portaluppi F, Hermida RC. Circadian rhythms in cardiac arrhythmias and opportunities for their chronotherapy. Adv Drug Deliv Rev. 2007;59(9–10):940–51.

    Article  CAS  PubMed  Google Scholar 

  6. Portaluppi F, Lemmer B. Chronobiology and chronotherapy of ischemic heart disease. Adv Drug Deliv Rev. 2007;59(9–10):952–65.

    Article  CAS  PubMed  Google Scholar 

  7. Levi F, Focan C, Karaboue A, de la Valette V, Focan-Henrard D, Baron B, Kreutz F, Giacchetti S. Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Philos Trans A Math Phys Eng Sci. 2008;366(1880):3575–98.

    Article  PubMed  Google Scholar 

  8. Savvidis C, Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol Med. 2012;18:1249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ayala DE, Hermida RC. Sex differences in the administration time-dependent effects of low-dose aspirin on ambulatory blood pressure in hypertensive subjects. Chronobiol Int. 2010;27(2):345–62.

    Article  CAS  PubMed  Google Scholar 

  10. Hermida RC, Ayala DE, Mojon A, Fernandez JR. Ambulatory blood pressure control with bedtime aspirin administration in subjects with prehypertension. Am J Hypertens. 2009;22(8):896–903.

    Article  CAS  PubMed  Google Scholar 

  11. Hermida RC, Ayala DE, Mojón A, Chayán L, Domínguez MJ, Fontao MJ, et al. Comparison of the effects on ambulatory blood pressure of awakening versus bedtime administration of torasemide in essential hypertension. Chronobiol Int. 2008;25(6):950–70.

    Article  CAS  PubMed  Google Scholar 

  12. Hermida RC, Ayala DE. Chronotherapy with the angiotensinconverting enzyme inhibitor ramipril in essential hypertension:improved blood pressure control with bedtime dosing. Hypertension. 2009;54(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  13. Hermida RC, Ayala DE, Fontao MJ, Mojon A, Fernandez JR. Chronotherapy with valsartan/amlodipine fixed combination: improved blood pressure control of essential hypertension with bedtime dosing. Chronobiol Int. 2010;27(6):1287–303.

    Article  CAS  PubMed  Google Scholar 

  14. Buttgereit F, Doering G, Schaeffler A, Witte S, Sierakowski S, Gromnica-Ihle E, et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. Ann Rheum Dis. 2010;69(7):1275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tharavanij T, Wongtanakarn S, Lerdvuthisopon N, Teeraaunkul S, Youngsriphithak P, Sritipsukho P. Lipid lowering efficacy between morning and evening simvastatin treatment: a randomized double-blind study. J Med Assoc Thail. 2010;937 (suppl):S109–13.

    Google Scholar 

  16. Almeida L, Loureiro AI, Vaz-da-Silva M, Torrão L, Maia J, Fernandes-Lopes C. Chronopharmacology of nebicapone, a new catechol-O-methyltransferase inhibitor. Curr Med Res Opin. 2010;26(5):1097–108.

    Article  CAS  PubMed  Google Scholar 

  17. Okeahialam B, Ohihoin E, Ajuluchukwu J. Chronotherapy in Nigerian hypertensives. Ther Adv Cardiovasc Dis. 2011;5(2):113–8.

    Article  PubMed  Google Scholar 

  18. Harris B, Song R, Soong SJ, et al. Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res. 1990;50(1):197–201.

    CAS  PubMed  Google Scholar 

  19. Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735–42.

    Article  CAS  PubMed  Google Scholar 

  20. Filipski E, Lemaigre G, Liu XH, Méry-Mignard D, Mahjoubi M, Lévi F. Circadian rhythm of irinotecan tolerability in mice. Chronobiol Int. 2004;21(4–5):613–30.

    Article  CAS  PubMed  Google Scholar 

  21. Portaluppi F, Smolensky MH, Touitou Y. Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int. 2010;27(9–10):1911–29.

    Article  PubMed  Google Scholar 

  22. Tampellini M, Filipski E, Liu XH, Lemaigre G, Li XM, Vrignaud P, et al. Docetaxel chronopharmacology in mice. Cancer Res. 1998;58:3896–904.

    CAS  PubMed  Google Scholar 

  23. Zhao J, Lu J, Yang H-Y, Zhao J-M, Zhai J-M, Li S, et al. A comparative study on the ways of building the Lewis lung carcinoma animal models. Cancer Res Clin. 2008;20(7):439–41.

    Google Scholar 

  24. Faivre L, Gomo C, Mir O, Taieb F, Schoemann-Thomas A, Ropert S, et al. A simple HPLC-UV method for the simultaneous quantification of gefitinib and erlotinib in human plasma. J Chromatogr B. 2011;879(23):2345–50.

    Article  CAS  Google Scholar 

  25. Schmutz I, Albrecht U, Ripperger JA. The role of clock genes and rhythmicity in the liver. Mol Cell Endocrinol. 2012;349(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang YK, Yeager RL, Klaassen CD. Circadian expression profiles of drug-processing genes and transcription factors in mouse liver. Drug Metab Dispos. 2009;37(1):106–15.

    Article  PubMed  Google Scholar 

  27. Yanagimoto T, Itoh S, Muller-Enoch D, Kamataki T. Mouse liver cytochrome P-450 (P-450IIIAM1): its cDNA cloning and inducibility by dexamethasone. Biochim Biophys Acta. 1992;1130(3):329–32.

    Article  CAS  PubMed  Google Scholar 

  28. Takiguchi T, Tomita M, Matsunaga N, Nakagawa H, Koyanagi S, Ohdo S. Molecular basis for rhythmic expression of CYP3A4 in serum-shocked HepG2 cells. Pharmacogenet Genomics. 2007;17(12):1047–56.

    Article  CAS  PubMed  Google Scholar 

  29. Kiyohara YB, Nishii K, Ukai-Tadenuma M, Ueda HR, Uchiyama Y, Yagita K. Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy. Nucleic Acids Res. 2008;36(4):e23.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ripperger JA, Schibler U. Rhythmic CLOCK-BMAL1 binding to multiple Ebox motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet. 2006;38(3):369–74.

    Article  CAS  PubMed  Google Scholar 

  31. Stratmann M, Stadler F, Tamanini F, van der Horst GT, Ripperger JA. Flexible phase adjustment of circadian albumin D site-binding protein (DBP) gene expression by CRYPTOCHROME1. Genes Dev. 2010;24(12):1317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Min DI, Chen HY, Lee MK, Ashton K, Martin MF. Time-dependent disposition of tacrolimus and its effect on endothelin-1 in liver allograft recipients. Pharmacotherapy. 1997;17(3):457–63.

    CAS  PubMed  Google Scholar 

  33. Vignati LA, Bogni A, Grossi P, Monshouwer M. A human and mouse pregnane X receptor reporter gene assay in combination with cytotoxicity measurements as a tool to evaluate species-specific CYP3A induction. Toxicology. 2004;199(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  34. Ben-Cherifa W, Dridi I, Aouam K, Ben-Attia M, Reinberg A, Boughattas NA. Circadian variation of valproic acid pharmacokinetics in mice. Eur J Pharm Sci. 2013;49(4):468–73.

    Article  Google Scholar 

  35. Baraldo M. The influence of circadian rhythms on the kinetics of drugs in humans. Expert Opin Drug Metab Toxicol. 2008;4(2):175–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Jian-Xin Sun and Mr. Lin-Xiang Guo for proofreading this article.

Conflict of interest

The authors declare that they have no competing interests. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, CY., Ji, SG. et al. Chronopharmacokinetics of Erlotinib and Circadian Rhythms of Related Metabolic Enzymes in Lewis Tumor-Bearing Mice. Eur J Drug Metab Pharmacokinet 41, 627–635 (2016). https://doi.org/10.1007/s13318-015-0284-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-015-0284-3

Keywords

Navigation