Skip to main content
Log in

Molecular breeding of rice for improved disease resistance, a review

  • Review
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Diseases are considered to be the major limiting factors in rice production around the globe. Considering rice as an important cereal crop, developing disease resistant cultivars is a prime objective of breeders. Compared to conventional breeding, molecular breeding especially using marker assisted selection appears to be more effective and precise. The best management of disease is to bring durable wide spectrum resistance in rice cultivars. This can be accomplished by accumulating both qualitative and quantitative resistance genes in to rice cultivars. Introducing these resistance genes from the wild relatives of rice in to commercial cultivars has greatly helped the breeders to accomplish this task. Marker assisted selection is extremely valuable in resolving the issues the breeders face with traditional breeding. A number of transgenic rice lines harboring the so called ‘foreign’ resistant genes have been produced. However such promising lines must be extensively replicated in fields to evaluate stable integration and continued expression of genes. None the less identification of disease resistance genes and quantitative trait loci (QTLs), use of marker assisted selection along with gene pyramiding and transgenic approaches all provide breeders a hope to build high yielding disease resistant cultivars. Based on such premises, we can truly envision broadening of our understanding the genetic and molecular basis of disease resistance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbruscato P, Nepusz T, Mizzi L et al (2012) OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Mol Plant Pathol 13(8):828–841

    CAS  PubMed  Google Scholar 

  • Adhipathi R, Singh V, Meena SC (2013) Virulence diversity of Rhizoctonia solani causing sheath blight disease in rice and its host pathogen interaction. Bioscan 8(3):949–952

    CAS  Google Scholar 

  • Akhtar MA, Abbasi FM, Ahmad H et al (2011) Evaluation of rice germplasm against Xanthomonas oryzae causing bacterial leaf blight. Pak J Bot 43(6):3021–3023

    Google Scholar 

  • Amante AD, De La Pena R, Sitch LA et al (1990) Sheath blight (ShB) resistance in wild rices. Int Rice Res Newslet 15:5

    Google Scholar 

  • Amante-Bordeos A, Sitch LA, Nelson R et al (1992) Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor Appl Genet 84:345–354

    CAS  PubMed  Google Scholar 

  • Ashikawa I, Hayashi N, Yamane H et al (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–2276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashkani S, Rafii MY, Rusli I et al (2011) SSRs for marker-assisted selection for blast resistance in rice (Oryza sativa L.). Plant Mol Biol Report 30(1):79–86

    Google Scholar 

  • Bhasin H, Bhatia D, Raghuvanshi S et al (2012) New PCR-based sequence-tagged site marker for bacterial blight resistance gene Xa38 of rice. Mol Breed 30:607–611

    CAS  Google Scholar 

  • Boyd LA, Ridout C, Sullivan DMO et al (2013) Plant–pathogen interactions: disease resistance in modern agriculture. Trend Genet 29:233–240

    CAS  Google Scholar 

  • Bryan GT, Wu K, Farrall L et al (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2045

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bustamam M, Tabien RE, Suwarno A et al. (2002) Asian rice biotechnology network: Improving popular cultivars through marker-assisted backcrossing by the NARES. Poster presented at the International Rice Congress, Beijing, China

  • Cesari S, Thilliez G, Ribot C et al (2013) The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25:1463–1481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chandler S, Dunwell JM (2008) Gene flow, risk assessment and the environmental release of transgenic plants. Crit Rev Plant Sci 27:25–49

    CAS  Google Scholar 

  • Channamallikarjuna V, Sonah H, Prasad M et al (2010) Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice. Mol Breed 25:155–166

    CAS  Google Scholar 

  • Cheema KK, Grewal NK, Vikal Y et al (2008) A novel bacterial blight resistance gene from Oryza nivara mapped to 38 kb region on chromosome 4 L and transferred to Oryza sativa L. Genet Res 90:397–407

    CAS  Google Scholar 

  • Chen X, Guo Z (2008) Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice. Int J Mol Sci 9:2601–2613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen X, Temnykh S, Xu Y et al (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet 95:553–567

    CAS  Google Scholar 

  • Chen S, Lin XH, Xu CG, Zhang QF (2000) Improvement of bacterial blight resistance of minghui 63 an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci 40:239–244

    Google Scholar 

  • Chen X, Shang J, Chen D et al (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804

    CAS  PubMed  Google Scholar 

  • Chen DX, Chen XW, Lei CL et al (2010) Rice blast resistance of transgenic rice plants with Pi-d2 gene. Rice Sci 17(3):179–184

    CAS  Google Scholar 

  • Chen J, Shi Y, Liu W et al (2011) A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics 38:209–216

    CAS  PubMed  Google Scholar 

  • Cho YC, Kwon SJ, Choi IS et al (2007) Identification of major blast resistance genes in Korean rice varieties (Oryza sativa L.) using molecular markers. J Crop Sci Biotechnol 10(4):265–276

    Google Scholar 

  • Chowdhury MR, Jia Y, Jackson A et al (2012) Analysis of rice blast resistance gene Pi-z in rice germplasm using pathogenicity assays and DNA markers. Euphytica 184:35–46

    Google Scholar 

  • Coca M, Bortolotti C, Rufat M (2004) Transgenic rice plants expressing the antifungal AFP protein from aspergillus Giganteus show enhanced resistance to the rice blast fungus Magnaporthe Grisea. Plant Mol Biol 54:245–259

    CAS  PubMed  Google Scholar 

  • Coca M, Peñas G, Gómez J et al (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223:392–406

    CAS  PubMed  Google Scholar 

  • Das A, Soubam D, Singh PK et al (2012) A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct Integr Genomics 12:215–228

    CAS  PubMed  Google Scholar 

  • Datta K, Velazhahan R, Oliva N et al (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98:1138–1145

    CAS  Google Scholar 

  • Delteil A, Zhang J, Lessard P, Morel JB (2010) Potential candidate genes for improving rice disease resistance. Rice 3:56–71

    Google Scholar 

  • Fu J, Liu H, Li Y et al (2011) Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol 155:589–602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu L, Yu X, An C (2013) Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea. Plant Physiol Biochem 73:202–210

    CAS  PubMed  Google Scholar 

  • Fu L, Yu X, An C (2014) OsCPK20 positively regulates Arabidopsis resistance against Pseudomonas syringaepv. tomato and rice resistance against Magnaporthe grisea. Acta Physiol Plant 36:273–282

    Google Scholar 

  • Fukuoka S, Saka N, Koga H et al (2009) Loss of Function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001

    CAS  PubMed  Google Scholar 

  • Galhano R, Talbot NJ (2011) The biology of blast: understanding how Magnaporthe oryzae invades rice plants. Fungal Biol Rev 25:61–67

    Google Scholar 

  • Gopalakrishnan S, Sharma RK, Rajkumar KA et al (2008) Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breed 127:131–139

    CAS  Google Scholar 

  • Gouda PK, Saikumar S, Varma CK et al (2013) Marker-assisted breeding of Pi-1 and Piz-5 genes imparting resistance to rice blast in PRR78, restorer line of Pusa RH-10 Basmati rice hybrid. Plant Breed 132:61–69

    CAS  Google Scholar 

  • Gu KY, Yang B, Tian DS et al (2005) R gene expression induced by a type-III effectors triggers disease resistance in rice. Nature 435:1122–1125

    CAS  PubMed  Google Scholar 

  • Guo SB, Zhang DP, Lin XH (2010) Identification and mapping of a novel bacterial blight resistance gene Xa35(t) originated from oryza minuta. Sci Agric Sin 43:2611–2618 (Chinese with English abstract)

    CAS  Google Scholar 

  • Hayashi KY (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425

    CAS  PubMed  Google Scholar 

  • Hayashi N, Inoue H, Kato T et al (2010) Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J 64:98–510

    Google Scholar 

  • Helliwell EE, Wang Q, Yang Y (2013) Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol J 11:33–42

    CAS  PubMed  Google Scholar 

  • Hua L, Wu J, Chen C et al (2012) The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125:1047–1055

    CAS  PubMed  Google Scholar 

  • Huang N, Angeles ER, Domingo J et al (1997) Pyramiding of bacterial blight resistance genes in rice:marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320

    CAS  Google Scholar 

  • Huang H, Huang L, Feng G et al (2011) Molecular mapping of the new blast resistance genes Pi47 and Pi48 in the durably resistant local rice cultivar Xiangzi 3150. Phytopathology 101(5):620–626

    PubMed  Google Scholar 

  • Ishiyama S (1922) Studies on bacterial blight of rice. Rep Agric Exp Station Tokyo 45:233–26.1

    Google Scholar 

  • Jha S, Chattoo BB (2010) Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res 19:373–384

    CAS  PubMed  Google Scholar 

  • Jha S, Tank HG, Prasad BD, Chattoo BB (2009) Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res 18:59–69

    CAS  PubMed  Google Scholar 

  • Jia Y, Liu G (2011) Mapping quantitative trait Loci for resistance to rice blast. Phytopathology 101(2):176–181

    CAS  PubMed  Google Scholar 

  • Jin XW, Wang CL, Yang Q et al (2007) Breeding of near-isogenic line CBB30 and molecular mapping of Xa30(t), a new resistance gene to bacterial blight in rice. Sci Agric Sin 40:1094–1100 (Chinese with English abstract)

    CAS  Google Scholar 

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6

    CAS  PubMed  Google Scholar 

  • Khush GS, Bacalangco E, Ogawa T (1990) A new gene for resistance to bacterial blight from O. longistaminata. Rice Genet Newslet 7:121–122

    Google Scholar 

  • Kim JK, Jang IC, Wu R et al (2003) Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res 12:475–484

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Mew TW, Hashiba T (2002) Relationship between incidence of rice sheath blight and primary inoculum in Philippines mycelia in plant debris and sclerotia. Ann Phytopathol Soc Jpn 63:324–327

    Google Scholar 

  • Koide Y, Yanoria MJT, Pen FD et al (2011) Characterization of rice blast isolates by the differential system and their application for mapping a resistance gene, Pi19(t). J Phytopathol 159:85–93

    CAS  Google Scholar 

  • Kottearachchi NS (2013) Utility of DNA markers in rice breeding. Eur Int J Sci Technol 2(8):111–122

    Google Scholar 

  • Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK (2009) Potential of molecular markers in plant biotechnology. Plant Omics J 2(4):141–162

  • Lakshmanan P (1991) Resistance to sheath blight (ShB) and brown spot (BS) in lines derived from Oryza officinalis. Int Rice Res Newslet 16:8

    Google Scholar 

  • Lee SK, Song M, Seo YS et al (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil–nucleotide-binding–leucine-rich repeat genes. Genetics 181:1627–1638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lei C, Hao K, Yang Y et al (2013) Identification and fine mapping of two blast resistance genes in rice cultivar 93–11. Crop J 1:2–14

    Google Scholar 

  • Li ZK, Pinson SRM, Marshetti MA et al (1995) Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet 91:374–381

    CAS  PubMed  Google Scholar 

  • Li P, Pei Y, Sang X et al (2009) Transgenic indica rice expressing a bitter melon (Momordica charantia) class I chitinase gene (McCHIT1) confers enhanced resistance to Magnaporthe grisea and Rhizoctonia solani. Eur J Plant Pathol 125:533–543

    CAS  Google Scholar 

  • Li J, Li D, Sun Y, Xu M (2012) Rice blast resistance Gene Pi1 dentified by MRG4766 marker in 173 Yunnan rice landraces. Rice Genomics Genet 3(3):13–18

    Google Scholar 

  • Lin F, Chen S, Que Z et al (2007) The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871–1880

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu G, Lu G, Zeng L, Wang GL (2002) Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics 267:472–480

    CAS  PubMed  Google Scholar 

  • Liu XQ, Wang L, Chen S et al (2005) Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Mol Genet Genomics 274(4):394–401

    CAS  PubMed  Google Scholar 

  • Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7:303–324

    Google Scholar 

  • Liu X, Lin F, Wang L, Pan Q (2007) The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176:2541–2549

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu G, Jia Y, Correa-Victoria FJ et al (2009) Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology 99:1078–1084

    CAS  PubMed  Google Scholar 

  • Maruthasalam S, Kalpana K, Kumar KK et al (2007) Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Rep 26:791–804

    CAS  PubMed  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379

    CAS  PubMed  Google Scholar 

  • Mei C, Qi M, Sheng G, Yang Y (2006) Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant Microbe Interact 19:1127–1137

    CAS  PubMed  Google Scholar 

  • Mew TW (1987) Current status of future prospects of research on bacterial blight of rice. Annu Rev Phytopathol 25:359–382

    Google Scholar 

  • Mew TW, Alvarez MA, Leach EJ, Swings J (1993) Focus on bacterial blight of rice. Plant Dis 77:5–12

    Google Scholar 

  • Miyake I (1910) Studies on the fungus diseases of rice in Japan. J Coll Agric Imp Univ Tokyo 2:237–276

    Google Scholar 

  • Nandakumar R, Babu S, Kalpana K et al (2007) Agrobacterium-mediated transformation of indica rice with chitinase gene for enhanced sheath blight resistance. Biol Plant 51:142–148

    CAS  Google Scholar 

  • Natrajkumar P, Sujatha K, Laha GS et al (2012) Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv. oryzae. Phytopathology 102:222–228

    Google Scholar 

  • Nelson JC, Oard JH, Groth D et al (2012) Sheath-blight resistance QTLS in japonica rice germplasm. Euphytica 184:23–94

    Google Scholar 

  • Okuyama Y, Kanzaki H, Abe A et al (2011) A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J 66:467–479

    CAS  PubMed  Google Scholar 

  • Ou SH (1985) Rice diseases, 2nd edn. Commonwealth Mycological Institute, Kew, pp 61–96

    Google Scholar 

  • Pan X, Li Y, Zhang H, Huang R et al (2014) Expression of signaling and defense-related genes mediated by over-expression of JERF1, and increased resistance to sheath blight in rice. Plant Pathol 63:109–116

    CAS  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patkar RN, Chattoo BB (2006) Transgenic Indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol Breed 17:159–171

    CAS  Google Scholar 

  • Peng X, Hu Y, Tang X et al (2012) Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Planta 236:1485–1498

    CAS  PubMed  Google Scholar 

  • Perumalsamy S, Bharani M, Sudha M et al (2010) Functional marker-assisted selection for bacterial leaf blight resistance genes in rice (Oryza sativa L.). Plant Breed 129:400–406

    CAS  Google Scholar 

  • Pinta W, Toojinda T, Thummabenjapone P, Sanitchon J (2013) Pyramiding of blast and bacterial leaf blight resistance genes into rice cultivar RD6 using marker assisted selection. Afr J Biotechnol 12:4432–4438

    Google Scholar 

  • Prasad B, Eizenga GC (2008) Rice sheath blight disease resistance identified in Oryza spp. Accessions. Plant Dis 92:1503–1509

    Google Scholar 

  • Prasad BD, Jha S, Chatto BB (2008) Transgenic indica rice expressing Mirabilis jalapa antimicrobial protein (Mj-AMP2) shows enhanced resistance to the rice blast fungus Magnaporthe oryzae. Plant Sci 175:364–371

    CAS  Google Scholar 

  • Qiu D, Xiao J, Ding X et al (2007) OsWRKY13 mediates rice disease resistance by regulating defenserelated genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact 20:492–499

    CAS  PubMed  Google Scholar 

  • Qiu D, Xiao J, Xie W et al (2008) Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant 1:538–551

    CAS  PubMed  Google Scholar 

  • Qu S, Liu G, Zhou B et al (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rahman L, Khanam S, Roh JH, Koh HJ (2011) Mapping of QTLs involved in resistance to RiceBlast (Magnaporthe grisea) using Oryza minutaIntrogression lines. Czech J Genet Plant Breed 47(3):85–94

    CAS  Google Scholar 

  • Rai AK, Kumar SP, Gupta SK et al (2011) Functional complementation of rice blast resistance gene Pi-kh(Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. J Plant Biochem Biotechnol 20:55–65

    CAS  Google Scholar 

  • Ram T, Laha GS, Deen R et al (2011) Oryza rufipogon, a valuable source for resistance to bacterial blight of rice. Plant Breed 130:715–718

    Google Scholar 

  • Rush JN, Lee FN (1992) Sheath blight. In: Webster RK, Gunnell PS (eds) Compendium of Rice Diseases. APS press, St Paul, pp 22–23

    Google Scholar 

  • Schaffrath U, Mauch F, Freydl E (2000) Constitutive expression of the defense-related Rir1b gene in transgenic rice plants confers enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 43:59–66

    CAS  PubMed  Google Scholar 

  • Sha XY, Zhu LH (1989) Resistance of some rice varieties to sheath blight (ShB). Int Rice Res Newslet 15:7–8

    Google Scholar 

  • Shah SMA, Rehman H, Abbasi FM et al (2009) Resistance characterization of wild relatives of rice in response to bacterial blight. Pak J Bot 41:917–925

    Google Scholar 

  • Shah JM, Singh R, Veluthambi K (2013) Transgenic rice lines constitutively co-expressing tlp-D34 and chi11 display enhancement of sheath blight resistance. Biol Plant 57:351–358

    CAS  Google Scholar 

  • Shang J, Tao Y, Chen X et al (2009) Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 182:1303–1311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shanti ML, Shenoy VV, Devi GL et al (2010) Marker-assisted breeding for resistance to bacterial leaf blight in popular cultivar and parental lines of hybrid rice. J Plant Pathol 92(2):495–501

    CAS  Google Scholar 

  • Singh GP, Srivastava MK, Singh RV, Singh RM (1997) Variation and qualitative losses caused by bacterial blight in different rice varieties. Indian Phytopathol 30:180–185

    Google Scholar 

  • Singh A, Singh VK, Singh SP et al. (2012) Molecular breeding for the development of multiple disease resistance in Basmati rice. AoB Plants Pls029. doi:10.1093/aobpla/pls029

  • Singh P, Siva R, Gothandam KM, Babu S (2013) Naturally existing levels of osmyb4 gene expression in rice cultivars correlate with their reaction to fungal and bacterial pathogens. J Phytopathol 161:730–734

    CAS  Google Scholar 

  • Song F, Goodman RM (2001) Molecular biology of disease resistance in rice. Physiol Mol Plant Pathol 59:1–11

    CAS  Google Scholar 

  • Song WY, Pi LY, Wang GL et al (1997) Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9:1279–1287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sridevi G, Parameswari C, Sabapathi N et al (2008) Combined expression of chitinase and b-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci 175:283–290

    CAS  Google Scholar 

  • Srinivasachary S, Willocquet L, Savary S (2011) Resistance to rice sheath blight - current status and perspectives. Euphytica 178:1–22

    Google Scholar 

  • Suh JP, Jeung JU, Noh TH et al (2013) Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice 6:5. doi:10.1186/1939-8433-6-5

    PubMed  Google Scholar 

  • Sun X, Yang Z, Wang S, Zhang Q (2003) Identification of a 47 kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor Appl Genet 106:683–687

    CAS  PubMed  Google Scholar 

  • Tagami Y, Mizukami T (1962) Historical review of the researches on bacterial leaf blight of rice caused by Xanthomonas. Spec Rep Plant Dis Insect Pest Forecasting Serv Minist Agric Jpn 10:1–112

    Google Scholar 

  • Takahashi A, Hayashi N, Miyao A, Hirochika H (2010) Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol 10:175 (http://www.biomedcentral.com/1471-2229/10/175)

    PubMed Central  PubMed  Google Scholar 

  • Talas-Og˘ras T (2011) Risk assessment strategies for transgenic plants. Acta Physiol Plant 33:647–657

    Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal killer:exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202

    CAS  PubMed  Google Scholar 

  • Tan GX, Ren X, Weng QM, Shi ZY, Zhu LL, He GC (2004) Mapping of a new resistance gene to bacterial blight in rice line introgressed from Oryza officinalis. Acta Genet Sin 31:724–729 (Chinese with English abstract)

    CAS  PubMed  Google Scholar 

  • Tang K, Sun X, Hu Q (2001) Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonasoryzae pv. Oryzae. Plant Sci 160:1035–1042

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science biotechnology. Nat Biotechnol 7:257–264

    CAS  Google Scholar 

  • Tao Z, Liu H, Qiu D et al (2009) A pair of allelic WRKY genes play opposite roles in rice–bacteria interactions. Plant Physiol 151:936–948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terashima T, Fukuoka S, Saka N, Kudo S (2008) Mapping of a blast field resistance gene Pi39(t) of elite rice strain Chubu 111. Plant Breed 127(5):485–489

    Google Scholar 

  • Uchimiya H, Fujii S, Huang J et al (2002) Transgenic rice plants conferring increased tolerance to rice blast and multiple environmental stresses. Mol Breed 9:25–31

    Google Scholar 

  • Ullah I, Jamil S, Iqbal MZ et al (2012) Detection of bacterial blight resistance genes in basmati rice landraces. Genet Mol Res 11(3):1960–1966

    CAS  PubMed  Google Scholar 

  • Vera Cruz CM, Bai JF, Ona I, Leung H, Nelson RJ, Mew TW et al (2000) Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proc Natl Acad Sci U S A 97:13500–13505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang GL, Song WY, Ruan DL, Sideris S, Ronald PC (1996) The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant Microbe Interact 9(9):850–855

    CAS  PubMed  Google Scholar 

  • Wang Z, Yano M, Yamanouchi Y et al (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    PubMed  Google Scholar 

  • Wang Y, Wang D, Deng X, Liu J et al (2012) Molecular mapping of the blast resistance genes Pi2-1 and Pi51(t) in the durably resistant rice ‘Tianjingyeshengdao’. Phytopathology 102(8):779–786

    CAS  PubMed  Google Scholar 

  • Wang X, Chen J, Yang Y et al (2013) Characterization of a novel NBS-LRR gene involved in bacterial blight resistance in rice. Plant Mol Biol Report 31:649–656

    CAS  Google Scholar 

  • Webb KM, Oña I, Bai J, Garrett KA, Mew T, Vera Cruz CM et al (2010) A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytol 185:568–576

    CAS  PubMed  Google Scholar 

  • Wei W, Chao W, Mei L, Xu-ri L et al (2011) Resistance of antimicrobial peptide gene transgenic rice to bacterial blight. Rice Sci 18:10–16

    Google Scholar 

  • Willocquet L, Lore JS, Srinivasachary S, Savary S (2011) Quantification of the components of resistance to rice sheath blight using a detached tiller test under controlled conditions. Plant Dis 95:1507–1515

    Google Scholar 

  • Wongsaprom C, Sirithunya P, Vanavichit A et al (2010) Two introgressed quantitative trait loci confer a broad-spectrum resistance to blast disease in the genetic background of the cultivar RD6 a Thai glutinous jasmine rice. Field Crops Res 119:245–251

    Google Scholar 

  • Xie Z, Zhang ZL, Zou X et al (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Q, Yuan XP, Yu HY et al (2011) Mapping quantitative trait loci for sheath blight resistance in rice using double haploid population. Plant Breed 130:404–406

    CAS  Google Scholar 

  • Yang D, Sanchez A, Khush GS et al (1998) Construction of a BAC contig containing the xa5 locus in rice. Theor Appl Genet 97:1120–1124

    CAS  Google Scholar 

  • Yu HX, Liu QQ, Wang L et al (2006) Breeding of selectable marker-free transgenic rice lines containing API gene with enhanced disease resistance. Agric Sci China 5(11):805–811

    CAS  Google Scholar 

  • Yuan HX, Xu XP, Zhang JZ et al (2004) Characteristics of resistance to rice sheath blight of zhongda 2, a transgenic rice line as modified by gene “RC24”. Rice Sci 11(4):177–180

    Google Scholar 

  • Yuan B, Zhai C, Wang W, Zeng X et al (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet 122:1017–1028

    PubMed  Google Scholar 

  • Zhai W, Chen C, Zhu X et al (2004) Analysis of T-DNA-Xa21 loci and bacterial blight resistance effects of the transgene Xa21 in transgenic rice. Theor Appl Genet 109:534–542

    CAS  PubMed  Google Scholar 

  • Zhai C, Lin F, Dong Z, He X et al (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189:321–334

    CAS  PubMed  Google Scholar 

  • Zhang G, Angeles ER, Abenes MLP et al (1996) RAPD and RFLP mapping of the bacterial blight resistance gene Xa-13 in rice. Theor Appl Genet 93:65–70

    CAS  PubMed  Google Scholar 

  • Zhou B, Qu S, Liu G et al (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact 19:1216–1228

    CAS  PubMed  Google Scholar 

  • Zuo S, Yin Y, Zhang L et al (2011) Effect and breeding potential of qSB-11LE, a sheath blight resistance quantitative trait loci from a susceptible rice cultivar. Can J Plant Sci 91:191–198

    CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to anonymous reviewers for their critical review of this manuscript.

Conflict of Interest

The author declares no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mueen Alam Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A. Molecular breeding of rice for improved disease resistance, a review. Australasian Plant Pathol. 44, 273–282 (2015). https://doi.org/10.1007/s13313-015-0354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-015-0354-7

Keywords

Navigation