Skip to main content
Log in

Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings

  • Original Paper
  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Volatile organic compounds emitted from plant tissues have been implicated to play many roles. Interplant signalling is an experimentally proven phenomenon whereby volatiles produced under stress conditions may diffuse to neighbouring plants to induce a response. The current project was undertaken to investigate a putative signalling event between leaf rust (Puccinia triticina Erikss.) infected and uninfected wheat (Triticum aestivum L.) using a continual air-flow system. Exposure to volatiles emitted by either infected resistant or susceptible plants decreased the percentage leaf area infected and pustule size in recipient plants after a subsequent infection with leaf rust, but in the case of infected resistant plants, the decrease in percentage leaf area infected was significant. The activation of a defence response was confirmed through a significant induction of β-1,3-glucanase activity at 8 h post volatile exposure in exposed resistant and susceptible seedlings, depending on the source of the volatiles. Increased PR1 gene expression supported the activation of the defence response. Emitted volatiles were captured by solid phase micro-extraction and identified by GC-MS. Based on their detection and the literature, ocimene from infected resistant seedlings and green leaf volatiles from infected susceptible seedlings are suggested as likely candidates for the inter-plant communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anguelova-Merhar VS, Van der Westhuizen AJ, Pretorius ZA (2001) β-1,3-Glucanase and chitinase activities and the resistance response of wheat to leaf rust. J Phytopathol 149:381–384

    Article  CAS  Google Scholar 

  • Appelgryn JJ (2007) Characterization of some early defence responses of leaf rust-infected wheat. PhD thesis, University of the Free State, Bloemfontein, South Africa

  • Arimura G, Ozawa R, Horiuchi J, Nishioka T, Takabayashi J (2001) Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol 29:1049–1061

    Article  CAS  Google Scholar 

  • Baldwin JT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Sci 221(4607):277–279

    Article  CAS  Google Scholar 

  • Beck JJ, Merrill GB, Palumbo JD, O’Keeffe TL (2008) Strain of Fusarium oxysporum isolated from almond hulls produces styrene and 7-methyl-1,3,5-cyclooctatriene as the principal volatile components. J Agric Food Chem 56(23):11392–11398

    Article  CAS  PubMed  Google Scholar 

  • Bolton MD, Kolmer JA, Garvin DF (2008) Wheat rust caused by Puccinia triticina. Mol Plant Pathol 9(5):563–575

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Browder LE (1971) Pathogenic specialization in cereal rust fungi, especially Puccinia recondita f. sp. tritici: Concepts, methods of study and application. Tech Bull U S Dep Agric 1432:45

    Google Scholar 

  • Buśko M, Jeleń H, Góral T, Chmielewski J, Stuper K, Szwajkowska-Michałek L, Tyrakowska B, Perkowski J (2010) Volatile metabolites in various cereal grains. Food Addit Contam Part A 27(11):1574–1581

    Article  Google Scholar 

  • Cardoza YJ, Alborn HT, Tumlinson JH (2002) In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J Chem Ecol 28(1):161–174

    Article  CAS  PubMed  Google Scholar 

  • Cawood ME, Pretorius JC, Van der Westhuizen AJ, Pretorius ZA (2010) Disease development and PR-protein activity in wheat (Triticum aestivum) seedlings treated with plant extracts prior to leaf rust (Puccinia triticina) infection. Crop Prot 29(11):1311–1319

    Article  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F, Newman M, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19(10):1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Dijkman H (2001) Within-plant circulation of systematic elicitor of induced defence and release from roots of elicitor that affects neighbouring plants. Biochem Syst Ecol 29:1075–1087

    Article  CAS  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Eifler J, Martinelli E, Santonico M, Capuano R, Schild D, Natale D (2011) Differential detection of potentially hazardous Fusarium species in wheat grains by an electronic nose. Public Libr Sci (PLoS) ONE 6(6):1–6

    Google Scholar 

  • Engelberth J, Alborn HT, Schmeiz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci U S A 101(6):1781–1785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engelberth J, Seidl-Adams I, Schultz JC, Tumlinson JH (2007) Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in Zea mays. Mol Plant-Microbe Interact 20(6):707–716

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Fokar M, Abd H, Zhang H, Allen RD, Paré PW (2005) (Z)-3-Hexenol induces defence genes and downstream metabolites in maize. Planta 220:900–909

    Article  CAS  PubMed  Google Scholar 

  • Fink W, Liefland M, Mendgen K (1988) Chitinases and β-1,3-glucanases in the apoplastic compartment of oat leaves (Avena sativa L.). Plant Physiol 88:270–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM (2008) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol 180:722–734

    Article  CAS  PubMed  Google Scholar 

  • Guerrieri E, Poppy GM, Powell W, Rao R, Pennacchio F (2002) Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J Chem Ecol 28(9):1703–1715

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Bueno JCS (2007) Within-plant signalling by volatiles leads to induction and priming of an indirect plant defence in nature. Proc Natl Acad Sci U S A 104(13):5467–5472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13(6):264–272

    Article  CAS  PubMed  Google Scholar 

  • Karban R, Maron J, Felton GW, Ervin G, Eichenseer H (2003) Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. OIKOS 100:325–332

    Article  Google Scholar 

  • Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defence responses in nature by airborne signalling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292

    Article  PubMed  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2005) Volatile C6-aldehydes and allo-ocimene activate defence genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol 46(7):1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2006) Analysis of defensive responses activated by volatile allo-ocimene treatment in Arabidopsis thaliana. Phytochem 67(14):1520–1529

    Article  CAS  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2007) Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J Genet Plant Pathol 73:35–37

    Article  CAS  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2008) Direct fungicidal activities of C6-aldehydes are important constituents for defence responses in Arabidopsis against Botrytis cinerea. Phytochem 69:2127–2132

    Article  CAS  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Lee B, Farag M, Park HB, Kloepper JW, Lee SH, Ryu C (2012) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defence by a C13 volatile produced by Paenibacillus polymyxa. PLoS One 7(11):1–11

    CAS  Google Scholar 

  • Liu Y, Wang W, Guo G, Ji X (2009) Volatile emission in wheat and parasitism by Aphidius avenae after exogenous application of salivary enzymes of Sitobion avenae. Entomologia Exp et Appl 130(3):215–221

    Article  CAS  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts – an atlas of resistance genes. Kluwer Academic Publishers, Dordrecht, pp 9–12

    Google Scholar 

  • Mendgen K, Wirsel SGR, Jux A, Hoffmann J, Boland W (2006) Volatiles modulate the development of plant pathogenic rust fungi. Planta 224:1353–1361

    Article  CAS  PubMed  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Ninkovic V (2003) Volatile communication between barley plants affects biomass allocation. J Exp Bot 54(389):1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Ninkovic V, Åhman I (2009) Aphid acceptance of Hordeum genotypes is affected by plant volatile exposure and is correlated with aphid growth. Euphytica 169(2):177–185

    Article  CAS  Google Scholar 

  • Ninkovic V, Olsson U, Pettersson J (2002) Mixing barley cultivars affects aphid host plant acceptance in field experiments. Entomologia Exp et Appl 102:177–182

    Article  Google Scholar 

  • Pandit GG, Srivastava PK, Mohan Rao AM (2001) Monitoring of indoor volatile organic compounds and polycyclic aromatic hydrocarbons arising from kerosene cooking fuel. Sci Total Environ 279:159–165

    Article  CAS  PubMed  Google Scholar 

  • Paschold A, Halitschke R, Baldwin IT (2006) Using ‘mute’ plants to translate volatile signals. Plant J 45:275–291

    Article  CAS  PubMed  Google Scholar 

  • Petterson J, Nikovic V, Ahmed E (1999) Volatiles from different barley cultivars affect aphid acceptance of neighbouring plants. Acta Agric 49:152–157

    Google Scholar 

  • Piesik D, Lemnczyk G, Skoczek A, Lamparski R, Bocianowski J, Kotwica K, Delaney KJ (2011) Fusarium infection in maize: volatile induction of infected and neighbouring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus. J Plant Physiol 168:1534–1542

    Article  CAS  PubMed  Google Scholar 

  • Piesik D, Pańka D, Jeske M, Wenda-Piesik A, Delaney KJ, Weaver DK (2012) Volatile induction of infected and neighbouring uninfected plants potentially influence attraction/repellence of a cereal herbivore. J Appl Entomol 137(4):296–309

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shibamoto T, Horiuchi M, Umano K (2007) Composition of the young green barley and wheat leaves. J Essent Oil Res 19(2):134–137

    Article  CAS  Google Scholar 

  • Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  • Staudt M, Jackson B, El-Aouni H, Buatois B, Lacroze J, Poëssel J, Sauge M (2010) Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative. Tree Physiol 30(10):1320–1334

    Article  CAS  PubMed  Google Scholar 

  • Toome M, Randjärv P, Copolovici L, Niinemets U, Heinsoo K, Luik A, Noe SM (2010) Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta 232:235–243

    Article  CAS  PubMed  Google Scholar 

  • Wenda-Piesik A, Piesik D, Ligor T, Buszewski B (2010) Volatile organic compounds (VOCs) from cereal plants infested with crown rot: their identity and their capacity for inducing production of VOCs in uninfested plants. Int J Pest Manag 56(4):377–383

    Article  CAS  Google Scholar 

  • Yi H, Heil M, Adame-Àlvarez RM, Ballhorn DJ, Ryu C (2009) Airborne induction and priming of plant defences against a bacterial pathogen. Plant Physiol 151:2152–2161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Visser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castelyn, H.D., Appelgryn, J.J., Mafa, M.S. et al. Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings. Australasian Plant Pathol. 44, 245–254 (2015). https://doi.org/10.1007/s13313-014-0336-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-014-0336-1

Keywords

Navigation