Skip to main content
Log in

Molecular characterization of a new member of the 16SrV group of phytoplasma associated with Bischofia polycarpa (Levl.) Airy Shaw witches’ -broom disease in China by a multiple gene-based analysis

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Bischofia polycarpa (Levl.) Airy Shaw witches’-broom disease is widespread in southern China. Infected trees show symptoms of severely proliferating shoots, reduced leaf size, yellowing and reddening of leaves, and internode shortening. We detected the phytoplasma in diseased tissues by 4′,6-diamidino-2-phenylindole-HCl fluorescence microscopy and polymerase chain reaction using the universal primers P1/P7. We conducted sequence similarity analyses based on 16S rRNA and 23S rRNA genes, the spacer region between the 16S and 23S rRNA genes (ISR), the partial ribosomal protein-encoding operon (rp), and the elongation factor Tu (tuf) gene of the BiWB phytoplasma. These analyses unanimously showed that the BiWB phytoplasma belongs to the elm yellows group (the 16SrV group). Phylogenetic and computer-simulated restriction fragment length polymorphism analyses using the nearly full-length 16S rRNA gene sequence demonstrated that the BiWB phytoplasma is more closely related to the subgroup 16SrV-B than to the other subgroups in 16SrV. It may represent a novel subgroup, designed as 16SrV-H, which is distinct from other subgroups of phytoplasmas in the 16SrV group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amaral Mello APOA, Bedendo IP, Camargo LEA (2006) Sequence heterogeneity in the 16S rDNA of tomato big bud phytoplasma belonging to group 16SrIII. Phytopathology 154:245–249

    Article  Google Scholar 

  • Angelini E, Squizzato F, Lucchetta G, Borgo M (2004) Detection of a phytoplasma associated with grapevine Flavescence dorée in Clematis vitalba. Eur J Plant Pathol 110:193–201

    Article  CAS  Google Scholar 

  • Arnaud G, Malembi-Maher S, Salar P, Bonnet P, Maixner M, Marcone G, Boudon-Padieu E, Foissac X (2007) Multilocus sequence typing confirms the close genetic interrelatedness of three distinct Flavescence Doree phytoplasma strain clusters and group 16SrV phytoplasma infecting grapevine and alder in Europe. Appl Environ Microbiol 73(2):4001–4010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arneod JD, Marini DC, Galdeano E, Borgo M (2007) Diversity and geographical distribution of phytoplasmas infecting China-tree in Argentina. Phytopathology 155:70–75

    Article  Google Scholar 

  • Berg M, Seemüller E (1999) Chromosomal organization and nucleotide sequence of the genes coding for the elongation factors G and Tu of the apple proliferation phytoplasma. Gene 226:103–109

    Article  CAS  PubMed  Google Scholar 

  • Brenner DJ, Krieg NR, Staley JT (2005) Bergey’ manual of systematic bacteriology, vol 2, 2nd edn. Springer Science and Business Media Inc, New York

    Book  Google Scholar 

  • Cai H, Li XL, Kong BH, Chen HR (2005) Detection and identification of phytoplasma association with sunshine tree witches’- broom. Acta Phytopathol Sin 35(1):19–23

    Google Scholar 

  • Chen YX, Ye XD (1986) Diagnosis of Bischofia javanica Bl witches’- broom disease by electron microscope. J Nanjing Agric Univ 2:131

    Google Scholar 

  • Contaldo N, Bertaccini A, Paaltrinieri S, Windsor HM, Windsor GD (2012) Axenic culture of plant pathogenic phytoplasmas. Phytopathol Mediter 51(3):607–617

    CAS  Google Scholar 

  • Daire X, Clair D, Reinert W, Boudon-Padieu E (1997) Detection and differentiation of grapevine yellows phytoplasma belonging to the elm yellows group and to the stolbur subgroup by PCR amplification of non-ribosomal DNA. Eur J Plant Pathol 103:507–514

    Article  CAS  Google Scholar 

  • Davis RE, Dally EL (2001) Revised subgroup classification of group 16SrV phytoplasmas and placement of flavescence dorée-associated phytoplasmas in two distinct subgroups. Plant Dis 85:790–797

    Article  CAS  Google Scholar 

  • Firrao G, Gibb K, Streten C (2005) Short taxonomic guide to the genus ‘Candidatus phytoplasma’. J Plant Pathol 87:249–263

    Google Scholar 

  • Gao R, Wang J, Li XD, Zhu XP, Tian GZ (2007) First report of spireae witches’-broom disease in China. Plant Dis 91:635

    Article  Google Scholar 

  • Gibb KS, Padovan AC, Mogen BD (1995) Studies on sweet potato little-leaf phytoplasma detected in sweet potato and other plant species growing in Northern Australia. Phytopathology 85:169–174

    Article  Google Scholar 

  • Griffiths HM, Sinclair WA (1999) Phytoplasma associated with elm yellows: molecular variability and differentiation from related organisms. Plant Dis 12:1101–1104

    Article  Google Scholar 

  • Guo YH, Cheng ZM, Walla JA (2000) Amplification of the 23S rRNA gene and its application in differentiation and detection of phytoplasmas. Can J Plant Pathol 22(4):380–386

    Article  CAS  Google Scholar 

  • Harrison NA, Myrie W, Jones P, Carpio ML, Caslillo M, Doyle MM, Oropeza C (2002) 16SrRNA interoperon sequence heterogeneity distinguishes strain population of palm lethal yellowing phytoplasma in the Carribbean region. Ann Appl Biol 141:183–193

    Article  CAS  Google Scholar 

  • Hodgetts J, Dickinson M (2010) Phytoplasma phylogeny and detection based on genes other than 16Sr RNA. In: Weintraub PG, Jones P (eds) Phytoplasmas. Genomes, plant hosts and vectors. CAB International, Oxfordshire, pp 93–113

    Google Scholar 

  • Hu JX, Song CS, Lin CL, Geng XS, Tian GZ (2013a) Sequencing the full-length DNA and the molecular characterization of four plasmids from plant pathogens of phytoplasma disease. Sci Silvae Sin 49(4):90–97

    CAS  Google Scholar 

  • Hu JX, Tian GZ, Lin CL, Song CS, Mu HQ, Ren ZG, Guo S, Zhou T, Fan ZF, Li HF (2013b) Clonging, expression and characterization of tRNA-isopentenyltransferase genes (tRNA-ipt) from paulownia witches’-broom phytoplasma. Acta Microbiol Sin 53(8):825–831

    Google Scholar 

  • Jin KX, Gao ZH, Xu H (1983) The findings of mycoplasma-like organism associated with Bischofia polycarpa witches’ broom disease. For Sci Technol 10:18–19

    Google Scholar 

  • Jin KX, Tian GZ, Wang Y (1989) Histochemical diagnosis of paulownia witches’ broom. Acta Phytopathol Sin 19(3):185–188

    Google Scholar 

  • Jung HY, Sawayanagi T, Kakizawa S, Nishigawa H, Wei W, Oshima K, Miyata S, Ugaki M, Hibi T, Namba S (2003) ‘Candidatus Phytoplasma ziziphi’, a novel phytoplasma taxon associated with jujube witches’-broom disease. Int J Syst Evol Microbiol 53:1037–1041

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick BC, Stenger DC, Morris TJ, Purcell AH (1987) Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasmalikeorganism. Science 238:197–200

    Article  CAS  PubMed  Google Scholar 

  • Lai F, Li Y, Piao CG, Xu QC, Tian GZ (2007) Molecular characterization of Bishopwood witches’-broom phytoplasma in China. Proceedings of the Third Asian conference on plant pathology, Yogyakarta, Indonesia August, pp 20–24

  • Lai F, Li Y, Xu QC, Tian GZ (2008) The present status on classification of phytoplasmas. Microbiol China 35(2):291–295

    Google Scholar 

  • Lai F, Tian GZ, Lin CL, Xu QC, Li Y, Piao CG (2009) Analyses of the 23S rDNA, plasmid and folate acid synthesis related gene folp&folk of four paulownia witches’-broom phytoplasma strains from different geographic regions. Proceedings of the annual of meeting of Chinese society for plant pathology, pp 266–270

  • Lee IM, Gundersen-Rindal DE, Davis RE, Bartoszyk IM (1998) Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48:1153–1169

    Article  CAS  Google Scholar 

  • Lee IM, Martini M, Marcone C, Zhu SF (2004) Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. Int J Syst Evol Microbiol 54:337–347

    Article  CAS  PubMed  Google Scholar 

  • Lee IM, Zhao Y, Davis RE (2010) Prospects of multiple gene-based systems for differentiation and classification of phytoplasmas. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CAB international, Wallingford, pp 51–63

    Google Scholar 

  • Li Y, Tian GZ, Piao CG, Zhu SF (2005) Rapid molecular differentiation and identification of different phytoplasmas from several plants in China. Acta Phytopathol Sin 35(4):293–299

    Google Scholar 

  • Li Y, Tian GZ, Xu QC, Piao CG, Wang LF, Guo MW (2009) Molecular identification of cleome witches’ –broom phytoplasma. Acta Phytopathol Sin 39(4):377–384

    CAS  Google Scholar 

  • Li Y, Piao CG, Tian GZ, Liu ZX, Guo MW, Lin CL, Wang XZ (2013) Multilocus sequences confirm the close genetic relationship of four phytoplasmas of peanut witches’-broom group 16SrII-A. J Basic Microbiol. doi:10.1002/jobm.201300140

    Google Scholar 

  • Liefting LW, Andersen MT, Beever RE, Gardner RC, Forster RLS (1996) Sequence heterogeneity in two 16S rRNA genes of Phormium yellow leaf phytoplasma. Appl Envion Microb 62(9):3133–3139

    CAS  Google Scholar 

  • Lim PQ, Sear BB (1992) Evolutionary relationships of a plant pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. J Bacteriol 174:2606–2611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcone C, Lee IM, Davis RE (2000) Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. Int J Syst Evol Microbiol 50:1703–1713

    CAS  PubMed  Google Scholar 

  • McCoy RE, De Leeuw TNG, Marwitz R (1989) Plant Diseases associated with mycoplasma-like organisms. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, spiroplasmas, acholeplasmas and mycoplasmas of plants and arthropods. Academic Press, New York, pp 546–640

    Google Scholar 

  • Ozen AI, Vesth T, Ussery DW (2013) Comparative genomics. In: Rosenberg E et al (eds) The prokaryotes-porokaryotic biology and symbiotic associations. Springer-Verlag, Berlin, pp 209–227

    Google Scholar 

  • Palmano S, Firrao G (2000) Diversity of phytoplasmas isolated from insects, determined by a DNA heteroduplex mobility assay and a length polymorphism of the 16S-23S rDNA spacer region analysis. J Appl Microbiol 89:744–750

    Article  CAS  PubMed  Google Scholar 

  • Qi YX, Xie YX, Zhang HQ, Zhu SF, Liao XL, Xiao QM (2004) A improved method for extracting phytoplasma DNA. Biotechnol Inf 4:44–46

    Google Scholar 

  • Qiu BS, Li HH, Shi CL, Jin KX (1998) Amplification of phytoplasma 16Sr DNA from 20 infected plants in China and RFLP analysis. Sci Silvae Sin 34(6):67–73

    Google Scholar 

  • Ren ZG, Lin CL, Li Y, Song CS, Wang XZ, Piao CG, Tian GZ (2013) Comparative molecular analyses of phytoplasmas infecting Sophora japonica cv. golden and Robinia pseudoacacia. J Phytopathol. doi:10.1111/JPH.12157

    Google Scholar 

  • Schneider B, Ahrens U, Kirkpatrick BC, Seemuller E (1993) Classification of plant-pathogenic mycoplasma-like organisms rising restriction-site analysis of PCR-amplified 16Sr DNA. J Gen Microbiol 139:519–527

    Article  CAS  Google Scholar 

  • Schneider B, Seemüller E, Smart CD, Kirkpatrick BC (1995) Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. In: Razin S, Tully JG (eds) Molecular and diagnostic procedures in mycoplasmology. Academic, San Diego, pp 369–380

    Chapter  Google Scholar 

  • Schneider B, Gibb KS, Seemüller E (1997) Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiol 143:3381–3389

    Article  CAS  Google Scholar 

  • Song CS, Lin CL, Tian GZ, Zhao WJ, Zhu SF, Mu HQ, Hu JX, Wang XZ, Guo MW (2011) Complete sequence of a full-length DNA and molecular characterization of one plasmid from chinaberry (Melia azedarach L) witches’ -broom phytoplasma. Acta Microbiol Sin 51(9):1158–1167

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • The IRPCM Phytoplasma/Spiroplasma Working Team-Phytoplasma taxonomy group (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255

    Article  Google Scholar 

  • Tian GZ, Zhang ZS, Li ZQ, Zhang YP, Guo JH (2002) Dynamic of jujube witches’ -broom disease and factors of great influence at ecological different regions in China. Sci Silvae Sin 38(2):83–91

    Google Scholar 

  • Tian GZ, Wen XJ, Li Y, Sun ZH, Zhao YF, Guo XJ, Huang QC, Li ZQ, Zhao JF (2005) Propagation and long-term preservation of several isolates of jujube witches’-broom and paulownia witches’-broom phytoplasmas in in vitro cultured plantlets and grafting transmission of pathogens from diseased to healthy plantlets. For Res 18(1):1–9

    Google Scholar 

  • Tian GZ, Xu QC, Li Y, Wen XJ, Wang ZL (2009) Association of infected wild sour jujube Zizyphus spinosa Hu by phytoplasma with occurrence of cultivated Chinese jujube Zizyphus jujuba Mill witches’ broom disease. Acta Phytophylacica Sin 36(6):529–536

    CAS  Google Scholar 

  • Wei W, Davis RE, Lee IM, Zhao Y (2007) Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57:1855–1867

    Article  CAS  PubMed  Google Scholar 

  • Xu QC, Tian GZ, Wang ZL, Kong FH, Li Y, Wang H (2009) Molecular detection and variability of jujube witches’ -broom phytoplasmas from different cultivars in various regions of China. Acta Microbiol Sin 49(11):1510–1519

    CAS  Google Scholar 

  • Yu ZC, Cao Y, Zhang Q, Deng DF, Liu ZY (2012) ‘Candidatus Phytoplasma ziziphi’ associated with Sophora japonica witches’-broom disease in China. J Gen Plant Pathol 78:298–300

    Article  Google Scholar 

  • Zhao Y, Wei W, Davis RE Lee IM (2010) Recent advances in 16S rRNA gene-based phytoplasma differentiation, classification and taxonomy. In: Weintraub PG, Jones P (eds) Phytoplasmas, genomes, plant hosts and vectors. CAB International, Oxfordshire, pp 64–82

    Google Scholar 

  • Zhu SF, Shu XZ, He GL, Lin QW (1992) A mycoplasma-like organism was found on cherry. Acta Phytopathol Sin 22(1):25–28

    Google Scholar 

  • Zreik L, Carle P, Bové JM, Garnier M (1995) Characterization of the mycoplasmalike organism associated with witches’-broom disease of lime and proposition of a “Candidatus” taxon for the organism, “Candidatus Phytoplasma aurantifolia”. Int J Syst Bacteriol 45:449–453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National High Technology Research and Development Program of China (2012AA101501) and the National Natural Science Foundation of China (30471393).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Z. Tian.

Additional information

F. Lai and C.S. Song contributed equally to this work and are considered first co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, F., Song, C.S., Ren, Z.G. et al. Molecular characterization of a new member of the 16SrV group of phytoplasma associated with Bischofia polycarpa (Levl.) Airy Shaw witches’ -broom disease in China by a multiple gene-based analysis. Australasian Plant Pathol. 43, 557–569 (2014). https://doi.org/10.1007/s13313-014-0298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-014-0298-3

Keywords

Navigation