Skip to main content
Log in

Treating Traumatic Brain Injury with Minocycline

  • Review
  • Published:
Neurotherapeutics

Summary

Traumatic brain injury (TBI) results in both rapid and delayed brain damage. The speed, complexity, and persistence of TBI present large obstacles to drug development. Preclinical studies from multiple laboratories have tested the FDA-approved anti-microbial drug minocycline (MINO) to treat traumatic brain injury. At concentrations greater than needed for anti-microbial action, MINO readily inhibits microglial activation. MINO has additional pleotropic effects including anti-inflammatory, anti-oxidant, and anti-apoptotic activities. MINO inhibits multiple proteins that promote brain injury including metalloproteases, caspases, calpain, and polyADP-ribose-polymerase-1. At these elevated doses, MINO is well tolerated and enters the brain even when the blood–brain barrier is intact. Most preclinical studies with a first dose of MINO at less than 1 h after injury have shown improved multiple outcomes after TBI. Fewer studies with more delayed dosing have yielded similar results. A small number of clinical trials for TBI have established the safety of MINO and suggested some drug efficacy. Studies are also ongoing that either improve MINO pharmacology or combine MINO with other drugs to increase its therapeutic efficacy against TBI. This review builds upon a previous, recent review by some of the authors (Lawless and Bergold, Neural Regen Res 17:2589–92, 2022). The present review includes the additional preclinical studies examining the efficacy of minocycline in preclinical TBI models. This review also includes recommendations for a clinical trial to test MINO to treat TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lawless S, Bergold PJ. Better together? Treating traumatic brain injury with minocycline plus N-acetylcysteine. Neural Regen Res. 2022;17(12):2589–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Faul M XL, Wald MM, Coronado VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control Atlanta (GA). 2010.

  3. Dixon KJ. Pathophysiology of traumatic brain injury. Phys Med Rehabil Clin N Am. 2017;28(2):215–25.

    Article  PubMed  Google Scholar 

  4. Hemlata, Vasudeva N, Sharma S. In-vivo and in-vitro investigations to assess traumatic brain injury. CNS Neurol Disord Drug Targets. 2023.

  5. Stocchetti N, Zanier ER. Chronic impact of traumatic brain injury on outcome and quality of life: a narrative review. Crit Care. 2016;20(1):148.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14(2):128–42.

  7. Simon DW, McGeachy MJ, Bayır H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(3):171–91.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nie Z, Tan L, Niu J, Wang B. The role of regulatory necrosis in traumatic brain injury. Front Mol Neurosci. 2022;15:1005422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mohamadpour M, Whitney K, Bergold PJ. The importance of therapeutic time window in the treatment of traumatic brain injury. Front Neurosci. 2019;13:07.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Garrido-Mesa N, Zarzuelo A, Galvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013;169(2):337–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Somayaji MR, Przekwas AJ, Gupta RK. Combination therapy for multi-target manipulation of secondary brain injury mechanisms. Curr Neuropharmacol. 2018;16(4):484–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jonas M, Cunha BA. Minocycline. Therapeutic drug monitoring. 1982;4(2).

  13. Garrido-Mesa N, Zarzuelo A, Galvez J. What is behind the non-antibiotic properties of minocycline? Pharmacol Res. 2013;67(1):18–30.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Xiao H, Yu X, Deng Y. Minocycline attenuates neurological impairment and regulates iron metabolism in a rat model of traumatic brain injury. Arch Biochem Biophys. 2020;682: 108302.

    Article  CAS  PubMed  Google Scholar 

  15. Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother. 2006;58(2):256–65.

    Article  CAS  PubMed  Google Scholar 

  16. Romero-Miguel D, Lamanna-Rama N, Casquero-Veiga M, Gómez-Rangel V, Desco M, Soto-Montenegro ML. Minocycline in neurodegenerative and psychiatric diseases: an update. Eur J Neurol. 2021;28(3):1056–81.

    Article  PubMed  Google Scholar 

  17. Bergold PJ. Treatment of traumatic brain injury with anti-inflammatory drugs. Exp Neurol. 2016;275 Pt 3(Pt 3):367–80.

  18. Sanchez Mejia RO, Ona VO, Li M, Friedlander RM. Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery. 2001;48(6):1393–9; discussion 9–401.

  19. Bye N, Habgood MD, Callaway JK, Malakooti N, Potter A, Kossmann T, et al. Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol. 2007;204(1):220–33.

    Article  CAS  PubMed  Google Scholar 

  20. Homsi S, Federico F, Croci N, Palmier B, Plotkine M, Marchand-Leroux C, et al. Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res. 2009;1291:122–32.

    Article  CAS  PubMed  Google Scholar 

  21. Siopi E, Cho AH, Homsi S, Croci N, Plotkine M, Marchand-Leroux C, et al. Minocycline restores sAPPalpha levels and reduces the late histopathological consequences of traumatic brain injury in mice. J Neurotrauma. 2011;28(10):2135–43.

    Article  PubMed  Google Scholar 

  22. Haber M, Abdel Baki SG, Grin’kina NM, Irizarry R, Ershova A, Orsi S, et al. Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury. Exp Neurol. 2013;249:169–77.

    Article  CAS  PubMed  Google Scholar 

  23. Lam TI, Bingham D, Chang TJ, Lee CC, Shi J, Wang D, et al. Beneficial effects of minocycline and botulinum toxin-induced constraint physical therapy following experimental traumatic brain injury. Neurorehabil Neural Repair. 2013;27(9):889–99.

    Article  PubMed  Google Scholar 

  24. Lopez-Rodriguez AB, Siopi E, Finn DP, Marchand-Leroux C, Garcia-Segura LM, Jafarian-Tehrani M, et al. CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice. Cereb Cortex. 2015;25(1):35–45.

    Article  PubMed  Google Scholar 

  25. Hanlon LA, Huh JW, Raghupathi R. Minocycline transiently reduces microglia/macrophage activation but exacerbates cognitive deficits following repetitive traumatic brain injury in the neonatal rat. J Neuropathol Exp Neurol. 2016;75(3):214–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haber M, James J, Kim J, Sangobowale M, Irizarry R, Ho J, et al. Minocycline plus N-acteylcysteine induces remyelination, synergistically protects oligodendrocytes, and modifies neuroinflammation in a rat model of mild traumatic brain injury. J Cereb Blood Flow Metab. 2017;0(0):0271678X17718106.

  27. Wang JY, Bakhadirov K, Abdi H, Devous MD Sr, CD MdlP, Moore C, et al. Longitudinal changes of structural connectivity in traumatic axonal injury. Neurology. 2011;77(9):818–26.

  28. Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 2013;4(3):e525–e.

  29. Witcher KG, Bray CE, Chunchai T, Zhao F, O’Neil SM, Gordillo AJ, et al. Traumatic brain injury causes chronic cortical inflammation and neuronal dysfunction mediated by microglia. J Neurosci. 2021;41(7):1597–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ritzel RM, Li Y, Jiao Y, Lei Z, Doran SJ, He J, et al. Brain injury accelerates the onset of a reversible age-related microglial phenotype associated with inflammatory neurodegeneration. Sci Adv. 2023;9(10):eadd1101.

  31. Kovesdi E, Kamnaksh A, Wingo D, Ahmed F, Grunberg NE, Long JB, Kasper CE, Agoston DV. Acute Minocycline treatment mitigates the symptoms of mild blast-induced traumatic brain injury. Frontiers in Neurol. 2012;3(111).

  32. He J, Mao J, Hou L, Jin S, Wang X, Ding Z, et al. Minocycline attenuates neuronal apoptosis and improves motor function after traumatic brain injury in rats. Exp Anim. 2021.

  33. Zhao F, Hua Y, He Y, Keep RF, Xi G. Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke. 2011;42(12):3587–93.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Alano CC, Kauppinen TM, Valls AV, Swanson RA. Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci U S A. 2006;103(25):9685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Naderi Y, Panahi Y, Barreto GE, Sahebkar A. Neuroprotective effects of minocycline on focal cerebral ischemia injury: a systematic review. Neural Regen Res. 2020;15(5):773–82.

    Article  PubMed  Google Scholar 

  36. Sonmez E, Kabatas S, Ozen O, Karabay G, Turkoglu S, Ogus E, et al. Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat. Spine (Phila Pa 1976). 2013;38(15):1253–9.

  37. Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, et al. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci. 2004;24(9):2182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pernici CD, Rowe RK, Doughty PT, Madadi M, Lifshitz J, Murray TA. Longitudinal optical imaging technique to visualize progressive axonal damage after brain injury in mice reveals responses to different minocycline treatments. Sci Rep. 2020;10(1):7815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vonder Haar C, Anderson GD, Elmore BE, Moore LH, Wright AM, Kantor ED, Farin FM, Bammler TK, MacDonald JW, Hoane MR. Comparison of the effect of minocycline and simvastatin on functional recovery and gene expression in a rat traumatic brain injury model. J Neurotrauma. 2014;31:961–75.

  40. Sheng WW, Zhang WP, Wang ML, Zhang SH, Hu H, Chu SL, et al. Incomplete protective effects of minocycline on traumatic brain injury in rats and mice. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2006;35(4):411–8.

    PubMed  Google Scholar 

  41. Ng SY, Semple BD, Morganti-Kossmann MC, Bye N. Attenuation of microglial activation with minocycline is not associated with changes in neurogenesis after focal traumatic brain injury in adult mice. J Neurotrauma. 2012;29:1410–25.

    Article  PubMed  Google Scholar 

  42. Simon DW, Aneja RK, Alexander H, Bell MJ, Bayır H, Kochanek PM, Clark RS. Minocycline attenuates high mobility group box 1 translocation, microglial activation, and thalamic neurodegeneration after traumatic brain injury in postnatal day 17 rats. J Neurotrauma. 2017;ahead of print.

  43. Sangobowale MA, Grin’kina NM, Whitney K, Nikulina E, St Laurent-Ariot K, Ho JS, et al. Minocycline plus N-acetylcysteine reduce behavioral deficits and improve histology with a clinically useful time window. J Neurotrauma. 2018a;35(7):907–17.

    Article  PubMed  Google Scholar 

  44. Abdel Baki SG, Schwab B, Haber M, Fenton AA, Bergold PJ. Minocycline synergizes with N-acetylcysteine and improves cognition and memory following traumatic brain injury in rats. PLoS ONE. 2010;5(8):e12490.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Siopi E, Calabria S, Plotkine M, Marchand-Leroux C, Jafarian-Tehrani M. Minocycline restores olfactory bulb volume and olfactory behavior after traumatic brain injury in mice. J Neurotrauma. 2012;29(2):354–61.

    Article  PubMed  Google Scholar 

  46. Homsi S, Piaggio T, Croci N, Noble F, Plotkine M, Marchand-Leroux C, et al. Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study. J Neurotrauma. 2010;27(5):911–21.

    Article  PubMed  Google Scholar 

  47. Perumal V, Ravula AR, Shao N, Chandra N. Effect of minocycline and its nano-formulation on central auditory system in blast-induced hearing loss rat model. J Otol. 2023;18(1):38–48.

    Article  PubMed  Google Scholar 

  48. Pechacek KM, Reck AM, Frankot MA, Vonder HC. Minocycline fails to treat chronic traumatic brain injury-induced impulsivity and attention deficits. Exp Neurol. 2022;348:113924.

    Article  CAS  PubMed  Google Scholar 

  49. Sangobowale M, Nikulina E, Bergold PJ. Minocycline plus N-acetylcysteine protect oligodendrocytes when first dosed 12 hours after closed head injury in mice. Neurosci Lett. 2018b;682:16–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fagan SC, Waller JL, Nichols FT, Edwards DJ, Pettigrew LC, Clark WM, et al. Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study. stroke. J Cereb Circ. 2010;41(10):2283–7.

  51. Taylor AN, Tio DL, Paydar A, Sutton RL. Sex differences in thermal, stress, and inflammatory responses to minocycline administration in rats with traumatic brain injury. J Neurotrauma. 2018;35(4):630–8.

    Article  PubMed  Google Scholar 

  52. Koulaeinejad N, Haddadi K, Ehteshami S, Shafizad M, Salehifar E, Emadian O, et al. Effects of minocycline on neurological outcomes in patients with acute traumatic brain injury: a pilot study. Iran J Pharm Res. 2019;18(2):1086–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Meythaler J, Fath J, Fuerst D, Zokary H, Freese K, Martin HB, et al. Safety and feasibility of minocycline in treatment of acute traumatic brain injury. Brain Inj. 2019;33(5):679–89.

    Article  PubMed  Google Scholar 

  54. Scott G, Zetterberg H, Jolly A, Cole JH, De Simoni S, Jenkins PO, et al. Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration. Brain. 2018;141(2):459–71.

    Article  PubMed  Google Scholar 

  55. Camara-Lemarroy C, Metz L, Kuhle J, Leppert D, Willemse E, Li DK, et al. Minocycline treatment in clinically isolated syndrome and serum NfL, GFAP, and metalloproteinase levels. Mult Scler. 2022;28(13):2081–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Macdonald H, Kelly RG, Allen ES, Noble JF, Kanegis LA. Pharmacokinetic studies on minocycline in man. Clin Pharmacol Ther. 1973;14(5):852–61.

    Article  CAS  PubMed  Google Scholar 

  57. Casha S, Zygun D, McGowan MD, Bains I, Yong VW, John HR. Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain. 2012;135(4):1224–36.

    Article  PubMed  Google Scholar 

  58. Fagan SC, Edwards DJ, Borlongan CV, Xu L, Arora A, Feuerstein G, et al. Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. Exp Neurol. 2004;186(2):248–51.

    Article  CAS  PubMed  Google Scholar 

  59. Alshikho MJ, Zürcher NR, Loggia ML, Cernasov P, Reynolds B, Pijanowski O, et al. Integrated magnetic resonance imaging and [(11) C]-PBR28 positron emission tomographic imaging in amyotrophic lateral sclerosis. Ann Neurol. 2018;83(6):1186–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kelso ML, Scheff NN, Scheff SW, Pauly JR. Melatonin and minocycline for combinatorial therapy to improve functional and histopathological deficits following traumatic brain injury. Neurosci Lett. 2011;488(1):60–4.

    Article  CAS  PubMed  Google Scholar 

  61. Whitney K, Nikulina E, Rahman SN, Alexis A, Bergold PJ. Delayed dosing of minocycline plus N-acetylcysteine reduces neurodegeneration in distal brain regions and restores spatial memory after experimental traumatic brain injury. Exp Neurol. 2021;345: 113816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Abdel Baki SG, Kao HY, Kelemen E, Fenton AA, Bergold PJ. A hierarchy of neurobehavioral tasks discriminates between mild and moderate brain injury in rats. Brain Res. 2009;1280:98–106.

  63. Shochat A, Abookasis D. Differential effects of early postinjury treatment with neuroprotective drugs in a mouse model using diffuse reflectance spectroscopy. Neurophotonics. 2015;2(1):015001.

  64. Hanlon LA, Raghupathi R, Huh JW. Differential effects of minocycline on microglial activation and neurodegeneration following closed head injury in the neonate rat. Exp Neurol. 2017;290:1–14.

  65. Chhor V, Moretti R, Le Charpentier T, Sigaut S, Lebon S, Schwendimann L, Oré MV, Zuiani C, Milan V, Josserand J, Vontell R, Pansiot J, Degos V, Ikonomidou C, Titomanlio L, Hagberg H, Gressens P, Fleiss B. Role of microglia in a mouse model of paediatric traumatic brain injury. Brain Behav Immun. 2017;63:197-209.

  66. Haber M, James J, Kim J, Sangobowale M, Irizarry R, Ho J, Nikulina E, Grin'kina NM, Ramadani A, Hartman I, Bergold PJ. Minocycline plus N-acteylcysteine induces remyelination, synergistically protects oligodendrocytes and modifies neuroinflammation in a rat model of mild traumatic brain injury. J Cereb Blood Flow Metab. 2018;38(8):1312–1326.

  67. Simon DW, Aneja RK, Alexander H, Bell MJ, Bayır H, Kochanek PM, Clark RSB. Minocycline attenuates high mobility group box 1 translocation, microglial activation, and thalamic neurodegeneration after traumatic brain injury in post-natal day 17 rats. J Neurotrauma. 2018;35(1):130–138.

  68. Wang, B, Lin, W, Zhu, H Minocycline improves the recovery of nerve function and alleviates blood-brain barrier damage by inhibiting endoplasmic reticulum in traumatic brain injury mice model. Euro J Inflam. 2021;19.

  69. Hiskens, MI, Vella, RK, Schneiders, AG, Fenning, AS. Minocycline improves cognition and molecular measures of inflammation and neurodegeneration following repetitive mTBI. 2021; Brain Inj. 35(7):831–841.

  70. Lu Q, Xiong J, Yuan Y, Ruan Z, Zhang Y, Chai B, Li L, Cai S, Xiao J, Wu Y, Huang P, Zhang H. Minocycline improves the functional recovery after traumatic brain injury via inhibition of aquaporin-4. Int J Biol Sci. 2022;18(1):441–458.

  71. Celorrio M, Shumilov K, Payne C, Vadivelu S, Friess SH. Acute minocycline administration reduces brain injury and improves long-term functional outcomes after delayed hypoxemia following traumatic brain injury. Acta Neuropathol Commun. 2022;10(1):10.

  72. Perumal V, Ravula AR, Agas A, Gosain A, Aravind A, Sivakumar PM, I SS, Sambath K, Vijayaraghavalu S, Chandra N. Enhanced targeted delivery of minocycline via transferrin conjugated albumin nanoparticle improves neuroprotection in a blast traumatic brain injury model. Brain Sci. 2023;13(3):402.

  73. Perumal V, Ravula AR, Shao N, Chandra N. Effect of minocycline and its nano-formulation on central auditory system in blast-induced hearing loss rat model. J Otol. 2023;18(1):38–48.

  74. Noriega-Navarro R, Martínez-Tapia RJ, González-Rivera R, Ochoa-Sánchez A, Abarca-Magaña JC, Landa-Navarro L, Rodríguez-Mata V, Ugalde-Muñiz P, Pérez-Torres A, Landa A, Navarro L. The effect of thioredoxin-1 in a rat model of traumatic brain injury depending on diurnal variation. Brain Behav. 2023;e3031.

  75. Bai X, Zhao N, Koupourtidou C, Fang LP, Schwarz V, Caudal LC, Zhao R, Hirrlinger J, Walz W, Bian S, Huang W, Ninkovic J, Kirchhoff F, Scheller A. In the mouse cortex, oligodendrocytes regain a plastic capacity, transforming into astrocytes after acute injury. Dev Cell. 2023;58(13):1153–1169.e5.

  76. Meythaler J, Fath J, Fuerst D, Zokary H, Freese K, Martin HB, Reineke J, Peduzzi-Nelson J, Roskos PT. Safety and feasibility of minocycline in treatment of acute traumatic brain injury. Brain Inj. 2019;33:679–689.

Download references

Acknowledgements

We thank Elena Nikulina and Riley Morrone for a critical reading of this manuscript.

Funding

This work was funded by an award (NS108190) to P.J.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Bergold.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Invited review for special issue on The Next Generation of Clinical Trials for Traumatic Brain Injury

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergold, P.J., Furhang, R. & Lawless, S. Treating Traumatic Brain Injury with Minocycline. Neurotherapeutics 20, 1546–1564 (2023). https://doi.org/10.1007/s13311-023-01426-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-023-01426-9

Keywords

Navigation