Skip to main content
Log in

Studies on Axial Tensile Loading Capacity of CHS T-joints Reinforced with External Stiffening Rings

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

To analyze the effects of stiffening external rings on the brace axial tension capacity of circular hollow section T-joints (CHS-T), loading experiments and finite element model analysis were utilized. Three groups of full-scale specimens (reinforced and unreinforced T-joints) of different brace-to-chord diameter ratios were tested under tension to validate the strengthening effect (Three unreinforced specimens were previously tested and the other three reinforced samples were newly completed). The experimental equipment and parameters are described in detail. Load–ovalization and load–displacement curves in addition to the failure modes were analyzed. It is concluded that the ultimate strength and initial stiffness are significantly enhanced for the reinforced CHS joints compared to the unreinforced specimens. SHELL181 elements were utilized in the finite element analysis to accurately simulate the loading capacity with and without external stiffening rings of the joints, within 10% error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • AISC. (2010). Specification for structural steel buildings, Chicago.

  • Chinese standard GB 50017-2003. (2003). Code for design of steel structures (in Chinese).

  • Choo, Y. S., van der Vegte, G. J., Zettlemoyer, N., Li, B. H., & Liew, J. Y. R. (2005). Static strength of T-joints reinforced with doubler or collar plates I: Experimental investigations. Journal of Structural Engineering,131(1), 119–128.

    Article  Google Scholar 

  • Ding, Y., Zhu, L., Zhang, K., Bai, Y., & Sun, H. (2018). CHS X-joints strengthened by external stiffeners under brace axial tension. Engineering Structures,171, 445–452.

    Article  Google Scholar 

  • EN B S. 1-8: 2005. (2005). Eurocode 3 design of steel structures-part 1–8: Design of joints (p. 2005). London: British Standards Institution.

    Google Scholar 

  • Feng, Q., & Tan, J. (2005). Static strength of Y-joints reinforced with doubler plates under axial load. China Offshore Platform,5, 30–35.

    Google Scholar 

  • Hellier, A. K., Collony, M. P., & Dover, W. D. (1990a). Prediction of the stress distribution in tubular Y- and T-joints. International Journal of Fatigue,12(1), 25–33.

    Article  Google Scholar 

  • Hellier, A. K., Collony, M. P., & Dover, W. D. (1990b). Stress concentration factors for tubular Y- and T-joints. International Journal of Fatigue,12(1), 13–23.

    Article  Google Scholar 

  • I.D. XV-1281-08. (2008). Static design procedure for welded hollow section jointsRecommendations, 3rd edn.

  • Iskander, M. S., Shaat, A. A., Sayed-Ahmed, E. Y., & Soliman, E. A. (2017). Strengthening CHS T-joints subjected to brace axial compression using through-bolts. Journal of Constructional Steel Research,128, 555–566.

    Article  Google Scholar 

  • ISO 14346. (2013). Static design procedure for welded hollow-section jointsRecommendations. International Standards Organisation, Geneva, Switzerland.

  • Kurobane, Y., Makino, Y., & Ochi, K. (1984). Ultimate resistance of unstiffened tubular joints. Journal of Structural Engineering,110(2), 385–400.

    Article  Google Scholar 

  • Lee, M. M. K., & Llewelyn-Parry, A. (2004). Offshore tubular T-joints reinforced with internal plain annular ring stiffeners. Journal of Structural Engineering,130(6), 942–951.

    Article  Google Scholar 

  • Lesani, M., Bahaari, M. R., & Shokrieh, M. M. (2015). FRP wrapping for the rehabilitation of Circular Hollow Section (CHS) tubular steel connections. Thin-Walled Structures,90, 216–234.

    Article  Google Scholar 

  • Li, W., Zhang, S., Huo, W., Bai, Y., & Zhu, L. (2018). Axial compression of steel CHS X-joints strengthened with external stiffeners. Journal of Constructional Steel Research,141, 156–166.

    Article  Google Scholar 

  • Lu, L. H., De Winkel, G. D., Yu, Y., & Wardenier, J. (1994). Deformation limit for the ultimate strength of hollow section joints. In Proceeding 6th international symposium on tubular structures, Australia, The Netherlands, pp. 341–347.

  • Luo, F. J., Yang, X., & Bai, Y. (2016). Member capacity of pultruded GFRP tubular profile with bolted sleeve joints for assembly of latticed structures. Journal of Composites for Construction,20(3), 04015080.

    Article  Google Scholar 

  • Nassiraei, H., Lotfollahi-Yaghin, M. A., & Ahmadi, H. (2016). Static strength of offshore tubular T/Y-joints reinforced with collar plate subjected to tensile brace loading. Thin-Walled Structures,103, 141–156.

    Article  Google Scholar 

  • Nassiraei, H., Zhu, L., Lotfollahi-Yaghin, M. A., & Ahmadi, H. (2017). Static capacity of tubular X-joints reinforced with collar plate subjected to brace compression. Thin-Walled Structures,119, 256–265.

    Article  Google Scholar 

  • Sui, W., Chen, Y., Wang, Z., & Zhang, X. (2013). Study on tensile performance of doubler plate reinforced T-joints with circular chord and brace. China Civil Engineering Journal,46(5), 22–30.

    Google Scholar 

  • Tong, L. W., Xu, G. W., Yang, D. L., Mashiri, F. R., & Zhao, X. L. (2017). Fatigue behavior and design of welded tubular T-joints with CHS brace and concrete-filled chord. Thin-Walled Structures,120, 180–190.

    Article  Google Scholar 

  • van der Vegte, G. J., Choo, Y. S., Liang, J. X., Zettlemoyer, N., & Liew, J. Y. R. (2005). Static strength of T-joints reinforced with doubler or collar plates II: Numerical simulations. Journal of Structural Engineering,131(1), 129–138.

    Article  Google Scholar 

  • van der Vegte, G. J., & Makino, Y. (2010). Further research on chord length and boundary conditions of CHS T- and X-joints. Advanced Steel Construction,6(3), 879–890.

    Google Scholar 

  • van der Vegte, G. J., Puthli, R. S., & Wardenier, J. (1992). The static strength of uniplanar tubular steel X-joints reinforced by a can. International Journal of Offshore and Polar Engineering, 2(01).

  • Wang, F., Chen, Z., Liu, D., Luo, M., Ning, C., & Lan, X. (2014). Calculation method for bearing capacities of internal ring-stiffened tubular T- and Y-joints. Journal of Southeast University (English Edition),44(4), 811–816.

    Google Scholar 

  • Wardenier, J., Kurobane, Y., Packer, J. A., van der Vegte, G. J., Zhao, X. L. (2008). Design guide for circular hollow section (CHS) joints under predominantly static loading. CIDEC series: Construction with hollow steel section.

  • Xu, F., Chen, J., & Jin, W.-L. (2015a). Experimental investigation and design of concrete-filled steel tubular CHS connections. Journal of Structural Engineering,141(2), 04014106.

    Article  Google Scholar 

  • Xu, F., Chen, J., & Jin, W.-L. (2015b). Experimental investigation of SCF distribution for thin-walled concrete-filled CHS joints under axial tension loading. Thin-Walled Structures,93, 149–157.

    Article  Google Scholar 

  • Yang, X., Bai, Y., Luo, F. J., Zhao, X.-L., & Ding, F. (2016). Dynamic and fatigue performances of a large-scale space frame assembled using pultruded GFRP composites. Composite Structures,138, 227–236.

    Article  Google Scholar 

  • Yang, X., Bai, Y., Luo, F. J., Zhao, X.-L., & He, X.-H. (2017). Fiber-reinforced polymer composite members with adhesive bonded sleeve joints for space frame structures. Journal of Materials in Civil Engineering,29(2), 04016208.

    Article  Google Scholar 

  • Zhu, L., Han, S., Song, Q., Ma, L., Wei, Y., & Li, S. (2016). Experimental study of the axial compressive strength of CHS T-joints reinforced with external stiffening rings. Thin-Walled Structures,98, 245–251.

    Article  Google Scholar 

  • Zhu, L., Song, Q., Bai, Y., Wei, Y., & Ma, L. (2017a). Capacity of steel CHS T-Joints strengthened with external stiffeners under axial compression. Thin-Walled Structures,113, 39–48.

    Article  Google Scholar 

  • Zhu, L., Yang, K., Bai, Y., Sun, H., & Wang, M. (2017b). Capacity of steel CHS X-joints strengthened with external stiffening rings in compression. Thin-Walled Structures,115, 110–118.

    Article  Google Scholar 

  • Zhu, L., Yang, K., Bai, Y., Sun, H., & Wang, M. (2018). Strength of external-ring-stiffened tubular X-joints subjected to brace axial compressive loading. Thin-Walled Structures,133, 17–26.

    Article  Google Scholar 

  • Zhu, L., Zhao, Y., Li, S., Huang, Y., & Ban, L. (2014). Numerical analysis of the axial strength of CHS T-joints reinforced with external stiffeners. Thin-Walled Structures,85, 481–488.

    Article  Google Scholar 

Download references

Acknowledgements

Grateful acknowledgement is made to Beijing Advanced Innovation Center for Future Urban Design (Grant No. UDC2016030200), and the National Natural Science Foundation of China (No. 51778035). Gratitude is also owed to the support from the Beijing Cooperative Innovation Research Center on Energy Saving and Emission Reduction, as well as the JiandaJieqing Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Zhu, L., Sun, H. et al. Studies on Axial Tensile Loading Capacity of CHS T-joints Reinforced with External Stiffening Rings. Int J Steel Struct 20, 742–751 (2020). https://doi.org/10.1007/s13296-020-00319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-020-00319-3

Keywords

Navigation