Skip to main content
Log in

Finite Element Analysis on Axial Compressive Behaviors of High-Performance Steel Stiffened Plates in Bridge Application

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

In order to investigate the mechanical behavior, the buckling performance and failure reason of stiffened high performance steel (HPS) plates, three-dimensional finite element (FE) models considering initial imperfections and residual stresses are compressed with axial force. Various influential factors such as element size, constitutive relations, second order effects of structure and membrane effects in buckling area were discussed to achieve a better validation with experimental data. As load increasing, the plastic strain in the U-rib near the end stiffener increases gradually under the influence of initial imperfections and stress concentration. Local buckling occurs after yielding of the whole section. With the refined model, the sensitivity of stiffened structure to the residual stresses and imperfections are investigated, and parametric studies on the material properties, geometric dimensions are conducted. The results show that the initial imperfections have a major influence on the ultimate capacity while the residual compressive stresses govern the elastic capacity and the ductility. Proper values of the imperfections and residual stresses are suggested for FE stiffened plate simulations. HPS stiffened plates with short length is more sensitive to initial imperfections. The effects of length, thickness and spacing are similar to the ordinary steel plates. Both equations in American and Chinese standards are used to evaluate the ultimate capacity of stiffened HPS plates, and formulas in AASHTO provide a more accurate estimate on capacity and failure mode, while Chinese specification is more conservative comparatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • American Association of State Highway & Transportation Officials (AASHTO). (2010). LRFD-Bridge design specifications. Washington, DC: AASHTO.

    Google Scholar 

  • American Institute of Steel Construction (AISC). (1963). Design manual for orthotropic steel plate deck bridges, New York.

  • ANSYS. (2015). Release 16.0. ANSYS University advanced. ANSYS Inc.

  • Bedair, O. K. (1998). A contribution to the stability of stiffened plates under uniform compression. Computers & Structures, 66(5), 535–570.

    Article  Google Scholar 

  • Bedair, O. K., & Sherbourne, A. N. (1993a). Plate/stiffener assemblies in uniform compression: Part I—buckling. ASCE, Journal of Engineering Mechanics, 119, 1937–1955.

    Article  Google Scholar 

  • Bedair, O. K., & Sherbourne, A. N. (1993b). Plate/stiffener assemblies in uniform compression: Part II—post-buckling. ASCE, Journal of Engineering Mechanics, 119, 1956–1972.

    Article  Google Scholar 

  • British Standards Institution. (2001). BS5400-3:2000: Steel, concrete and composite bridges. London, UK.

  • Chou, C. C., Uang, C. M., & Seible, F. (2006). Experimental evaluation of compressive behavior of orthotropic steel plates for the New San Francisco–Oakland Bay Bridge. Journal of Bridge Engineer, 11(2), 140–150.

    Article  Google Scholar 

  • Department of Transportation Federal Highway Administration (FHWA). (2012). Manual for Design, Construction, and Maintenance of Orthotropic Steel Deck Bridges. No. FHWA-IF-12-027.

  • Di Sarno, L., & Elnashai, A. S. (2005). Innovative strategies for seismic retrofitting of steel and composite structures. Progress in Structural Engineering and Materials, 7(3), 115–135.

    Article  Google Scholar 

  • Dorenen, A., & Trittler, G. (1958). Kombinierte Eisenbaha-und Strassenbrucke uber den loppeseiten-kanal. Der Stahlbau, 27, 7–20. (In Germany).

    Google Scholar 

  • Dowing, P. J. (1975). Strength of steel box girders. ASCE, Journal of the structural division, 101(9), 1929–1945.

    Google Scholar 

  • Duc, D. V., Okui, Y., Hagiwara, K., & Nagai, M. (2013). Probabilistic distributions of plate buckling strength for normal and bridge high-performance steels. International Journal of Steel structures, 13(3), 557–567.

    Article  Google Scholar 

  • Dwight, J. B., & Little, G. H. (1976). Stiffened steel compression flanges—A simpler approach. The Structural Engineer, 54, 501–505.

    Google Scholar 

  • European Committee for Standardization. (2005). Eurocode 3: Design of steel structurePart 15: Plated structural elements. Brussels, EN 1993-1-5.

  • Farkas, J., & Jármai, K. (2013). Optimum Design of Steel Structures. Berlin: Springer.

    Book  Google Scholar 

  • Frieze, P. A. (1978). Elasto-plastic buckling in thin-walled beams and columns. Proceedings of the Institution of Civil Engineers, 9, 301–310.

    Google Scholar 

  • Giencke, E. (1964). Uber die BereChnung regelmassiger Konstruktionen als Kontinuum. Germany: Stuhlbau.

    Google Scholar 

  • Grondin, G. Y., Chen, Q., Elwi, A. E., & Cheng, J. J. R. (1998). Stiffened steel plates under compression and bending. Journal of Constructional Steel Research, 45(2), 125–148.

    Article  Google Scholar 

  • Grondin, G. Y., Elwi, A. E., & Cheng, J. J. R. (1999). Buckling of stiffened steel plates—a parametric study. Journal of Constructional Steel Research, 50, 151–175.

    Article  Google Scholar 

  • Horne, M. R., & Narayanan, R. (1975). An approximate method for the design of stiffened steel compression panels. Proceedings of the Institution of Civil Engineers Part II, 59, 501–514.

    Article  Google Scholar 

  • Horne, M. R., & Narayanan, R. (1976). Strength of axially loaded stiffened panels. IABSE, 36, 125–157.

    Google Scholar 

  • Japan Road Association (JRA). (2002). Specification for highway bridges: Part I, Tokyo.

  • Jen, W.C. & Yen, B.T. (2006). Load carrying capacity of steel orthotropic deck panel with trapezoidal shaped longitudinal stiffeners. ATLSS report no. 06-15.

  • Kanno, R. (2016). Advances in steel materials for innovative and elegant steel structures in Japan—a review. Structural Engineering International, 26(3), 242–253.

    Article  Google Scholar 

  • Kenno, S. Y., Das, S., & Kennedy, J. (2010). Distributions of residual stresses in stiffened plates with one and two stiffeners. Ships and Offshore Structures, 5(3), 211–225.

    Article  Google Scholar 

  • Kim, D. K., Lee, C. H., & Han, K. H. (2014). Strength and residual stress evaluation of stub columns fabricated from 800 MPa high–strength steel. Journal of Constructional Steel Research, 102, 111–120.

    Article  Google Scholar 

  • Lee, C. K., Chiew, S. P., & Jiang, J. (2012a). Residual stress study of welded high strength steel thin-walled plate-to-plate joints, Part 1: Experimental study. Thin-Walled Structures, 56, 103–112.

    Article  Google Scholar 

  • Lee, C. K., Chiew, S. P., & Jiang, J. (2012b). Residual stress study of welded high strength steel thin-walled plate-to-plate joints, Part 2: Numerical modeling. Thin-Walled Structures, 59, 120–131.

    Article  Google Scholar 

  • Maddox, S. J. (1991). Fatigue strength of welded structures. Cambridge, England: Abington Publishing.

    Google Scholar 

  • Mansour, A. E. (1971). On the nonlinear–theory of orthotropic plates. Journal of Ship Research, 15(4), 266–277.

    Google Scholar 

  • Massonnet, C., & Maquoi, R. (1973). New theory and tests on the ultimate strength of stiffened box girders. Steel Box Girder Bridges, Proceedings of the Institution Civil of Engineers 131–144. https://www.icevirtuallibrary.com/doi/full/10.1680/sbgb.48762.0012.

  • Mikami, I., & Niwa, K. (1996). Ultimate compressive strength of orthogonally stiffened steel plates. Journal of Structural Engineering, 122(6), 674–682.

    Article  Google Scholar 

  • Miki, C., Homma, K., & Tominaga, T. (2002). High strength and high performance steels and their use in bridge structures. Journal of Constructional Steel Research, 58, 3–20.

    Article  Google Scholar 

  • Ministry of Transport of People’s Republic of China. (2015). Specifications for design of highway steel bridge. Beijing, JTGD64-2015.

  • Rahman, M., Okui, Y., & Anwer, M. A. (2018). Probabilistic strength at serviceability limit state for normal and SBHS slender stiffened plates under uniaxial compression. International Journal of Steel Structures, 18(4), 1397–1409.

    Article  Google Scholar 

  • Rahman, M., Okui, Y., Shoji, T., & Komuro, M. (2017). Probabilistic ultimate buckling strength of stiffened plates, considering thick and high-performance steel. Journal of Constructional Steel Research, 138, 184–195.

    Article  Google Scholar 

  • Shin, D. K., Le, V. A., & Kim, K. (2013). In-plane ultimate compressive strengths of HPS deck panel system stiffened with U-shaped ribs. Thin-Walled Structures, 63, 70–81.

    Article  Google Scholar 

  • Xiao, L., Ye, W. H., Wei, X., & Qiang, S. Z. (2014). Mechanic behavior and load transferring research of hybrid joint in cable—stayed bridge tower. China Civil Engineering Journal, 47(3), 88–96. (In Chinese).

    Google Scholar 

  • Xin, H. H., Liu, Y. Q., He, J., & Zhang, Y. Y. (2014). Experimental and analytical study on stiffened steel segment of hybrid structure. Journal of Constructional Steel Research, 100, 237–258.

    Article  Google Scholar 

  • Yarnold, M. T., Wilson, J. L., Jen, W. C., & Yen, B. T. (2006). Local buckling analysis of trapezoidal rib orthotropic bridge deck systems. ATLSS report no. 06–27.

  • Yoon, T. Y. (2010). Development of high performance construction material. Construction & Transportation R&D Report, Ministry of Land, Transport and Maritime Affairs.

  • Zhang, X. G., & Chen, A. R. (2010). Sutong bridge design and structural performance. Beijing: China Communication Press. (In Chinese).

    Google Scholar 

  • Zhang, S., & Khan, I. (2009). Buckling and ultimate strength of plates and stiffened panels. Marine Structure, 22(4), 791–808.

    Article  Google Scholar 

  • Zhang, S., Kumar, P., & Rutherford, S. E. (2008). Ultimate shear strength of plates and stiffened panels. Ships Offshore Structure, 3(2), 105–112.

    Article  Google Scholar 

Download references

Acknowledgements

The research reported herein has been conducted as part of the research projects granted by the Fundamental Research Funds for the Central Universities (No. 2015B21314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Y. & Liu, R. Finite Element Analysis on Axial Compressive Behaviors of High-Performance Steel Stiffened Plates in Bridge Application. Int J Steel Struct 19, 1624–1644 (2019). https://doi.org/10.1007/s13296-019-00238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-019-00238-y

Keywords

Navigation