Skip to main content
Log in

Experimental Study and Confinement Analysis on RC Stub Columns Strengthened with Circular CFST Under Axial Load

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

As the excellent mechanical performance and easy construction of concrete filled steel tubes (CFST) composite structure, it has the potential to be used to strengthen RC pier columns. Therefore, tests were conducted on 2 reinforcement concrete (RC) stub columns and 9 RC columns strengthened with circular CFST under axial loading. The test results show that the circular CFST strengthening method is effective since the mean bearing capacity of the RC columns is increased at least 3.69 times and the ductility index is significantly improved more than 30%. One of the reasons for enhancement is obvious confinement provided by steel tube besides the additional bearing capacity supplied by the strengthening materials. From the analysis of the enhancement ratio, the strengthening structure has at least an extra 20% amplification except for taking full advantage of the strength of the strengthening material. Through the analysis of confining stress provided by steel tube and the stress–strain relationship of confined concrete, it is found that the strength of the core concrete can be increased by 21–33% and the ultimate strain can be enhanced to beyond 15,000 με.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdalla, S., Abed, F., & AlHamaydeh, M. (2013). Behavior of CFSTs and CCFSTs under quasi-static axial compression. Journal of Constructional Steel Research, 90, 235–244.

    Article  Google Scholar 

  • Abed, F., AlHamaydeh, M., & Abdalla, S. (2013). Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs). Journal of Constructional Steel Research, 80, 429–439.

    Article  Google Scholar 

  • Abedi, K., Afshin, H., & Shirazi, M. R. N. (2010). Numerical study on the seismic retrofitting of reinforced concrete columns using rectified steel jackets. Asian Journal of Civil Engineering, 11(2), 219–240.

    Google Scholar 

  • Aboutaha, R. S., Engelhardt, M. D., Jirsa, J. O., & Kreger, M. E. (1999a). Rehabilitation of shear critical concrete columns by use of rectangular steel jackets. ACI Structural Journal, 96(1), 68–78.

    Google Scholar 

  • Aboutaha, R. S., Engelhardt, M. D., Jirsa, J. O., & Kreger, M. E. (1999b). Experimental investigation of seismic repair of lap splice failures in damaged concrete columns. ACI Structural Journal, 96(2), 297–306.

    Google Scholar 

  • Aboutaha, R. S., & Machado, R. I. (1999). Seismic resistance of steel-tube high-strength reinforced-concrete columns. Journal of Structural Engineering, 125(5), 485–494.

    Article  Google Scholar 

  • Adam, J. M., Ivorra, S., Giménez, E., Moragues, J. J., Miguel, P., Miragall, C., et al. (2007). Behavior of axially loaded RC columns strengthened by steel angles and strips. Steel and Composite Structures, 7(5), 405–419.

    Article  Google Scholar 

  • Chen, W. F., & Saleeb, A. F. (1982). Constitutive equation for engineering materials. New York: Wiley.

    MATH  Google Scholar 

  • Colomb, F., Tobbi, H., Ferrier, E., & Hamelin, P. (2008). Seismic retrofit of reinforced concrete short columns by CFRP materials. Composite Structures, 82(4), 475–487.

    Article  Google Scholar 

  • Dai, J. G., Bai, Y. L., & Teng, J. G. (2011). Behavior and modeling of concrete confined with FRP composites of large deformability. Journal of Composites for Construction, 15(6), 963–973.

    Article  Google Scholar 

  • Elremaily, A., & Azizinamini, A. (2002). Behavior and strength of circular concrete-filled tube columns. Journal of Constructional Steel Research, 58(12), 1567–1591.

    Article  Google Scholar 

  • Gupta, P. K., Sarda, S. M., & Kumar, M. S. (2007). Experimental and computational study of concrete filled steel tubular columns under axial loads. Journal of Constructional Steel Research, 63(2), 182–193.

    Article  Google Scholar 

  • Hadi, M. N. S. (2007). Behavior of FRP strengthened concrete columns under eccentric compression loading. Composite Structures, 77(1), 92–96.

    Article  Google Scholar 

  • Han, L. H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 1186–1195.

    Article  Google Scholar 

  • Han, L. H., Liao, F. Y., Tao, Z., & Hong, Z. (2009). Performance of concrete filled steel tube reinforced concrete columns subjected to cyclic bending. Journal of Constructional Steel Research, 65(8–9), 1607–1616.

    Article  Google Scholar 

  • Han, L. H., & Yao, G. H. (2004). Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Walled Structures, 42(9), 1357–1377.

    Article  Google Scholar 

  • Han, L. H., Yao, G. H., & Zhao, X. L. (2005). Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). Journal of Constructional Steel Research, 61(9), 1241–1269.

    Article  Google Scholar 

  • Han, L. H., Zheng, L. Q., He, S. H., & Tao, Z. (2011). Tests on curved concrete filled steel tubular members subjected to axial compression. Journal of Constructional Steel Research, 67(6), 965–976.

    Article  Google Scholar 

  • Holschemacher, K. (2004). Hardened material properties of self-compacting concrete. Journal of Civil Engineering and Management, 10(4), 261–266.

    Article  Google Scholar 

  • Julio, E. N. B. S., & Branco, F. A. B. (2008). Reinforced concrete jacketing-interface influence on cyclic loading response. ACI Structural Journal, 105(4), 471–477.

    Google Scholar 

  • Kwan, A. K. H., Dong, C. X., & Ho, J. C. M. (2016). Axial and lateral stress-strain model for concrete-filled steel tubes. Journal of Constructional Steel Research, 122, 421–433.

    Article  Google Scholar 

  • Li, C. Q., & Melchers, R. E. (2005). Time-dependent risk assessment of structural deterioration caused by reinforcement corrosion. ACI Structural Journal, 102(5), 754–762.

    Google Scholar 

  • Lu, F. W., Li, S. P., & Sun, G. J. (2007). A study on the behavior of eccentrically compressed square concrete-filled steel tube columns. Journal of Constructional Steel Research, 63(7), 941–948.

    Article  Google Scholar 

  • Lu, Y. Y., Liang, H. J., Li, S., & Li, N. (2015a). Eccentric strength and design of RC columns strengthened with SCC filled steel tubes. Steel and Composite Structures, 18(4), 833–852.

    Article  Google Scholar 

  • Lu, Y. Y., Liang, H. J., Li, S., & Li, N. (2015b). Axial behavior of RC columns strengthened with SCC filled square steel tubes. Steel and Composite Structures, 18(3), 623–639.

    Article  Google Scholar 

  • Miller E. A. (2006). Experimental research of reinforced concrete column strengthening methods. Master Thesis, The Ohio State University. pp. 24–30, 222–230.

  • Muciaccia, G., Giussani, F., Rosati, G., & Mola, F. (2011). Response of self-compacting concrete filled tubes under eccentric compression. Journal of Constructional Steel Research, 67(5), 904–916.

    Article  Google Scholar 

  • Parvin, A., & Wang, W. (2002). Concrete columns confined by fiber composite wraps under combined axial and cyclic lateral loads. Composite Structures, 58(4), 539–549.

    Article  Google Scholar 

  • Priestley, M. J. N., Seible, F., Xiao, Y., & Verma, R. (1994a). Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength-part 1: Theoretical considerations and test design. ACI Structural Journal, 91(4), 394–405.

    Google Scholar 

  • Priestley, M. J. N., Seible, F., Xiao, Y., & Verma, R. (1994b). Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength-part 2: Test results and comparison with Theory. ACI Structural Journal, 91(5), 537–551.

    Google Scholar 

  • Sakino, K., Nakahara, H., & Morino, S. (2004). Nishiyama, behavior of centrally loaded concrete-filled steel-tube short columns. Journal of Structural Engineering ASCE, 130(2), 180–188.

    Article  Google Scholar 

  • Sezen, H., & Miller, E. A. (2011). Experimental evaluation of axial behavior of strengthened circular reinforced-concrete columns. Journal of Bridge Engineering, 16(2), 238–247.

    Article  Google Scholar 

  • Tao, Z., Uy, B., Liao, F. Y., & Han, L. H. (2011). Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression. Journal of Constructional Steel Research, 67(11), 1719–1732.

    Article  Google Scholar 

  • Uy, B., Tao, Z., & Han, L. H. (2011). Behaviour of short and slender concrete-filled stainless steel tubular columns. Journal of Constructional Steel Research, 67(3), 360–378.

    Article  Google Scholar 

  • Vandoros, K. G., & Dritsos, S. E. (2008). Concrete jacket construction detail effectiveness when strengthening RC columns. Construction and Building Materials, 22(3), 264–276.

    Article  Google Scholar 

  • Wang, M. H. (2011). Experimental study on axial-compression reinforced concrete column strengthened by circular steel tube. Applied Mechanics and Materials, 94, 1261–1270.

    Article  Google Scholar 

  • Xiao, Q. G., Teng, J. G., & Yu, T. (2010). Behavior and modeling of confined high-strength concrete. Journal of Composites for Construction, 14(3), 249–259.

    Article  Google Scholar 

  • Xiao, Y., & Wu, H. (2003). Strengthening of reinforced concrete columns using partially stiffened steel jackets. Journal of Structural Engineering, 129(6), 725–732.

    Article  Google Scholar 

  • Yalcin, C., & Saatcioglu, M. (2000). Inelastic analysis of reinforced concrete columns. Computers & Structures, 77(5), 539–555.

    Article  Google Scholar 

  • Zhou, M., Li, J. W., & Duan, J. M. (2012). Experimental study on the axial loading tests of RC columns strengthened with steel tube. Applied Mechanics and Materials, 204, 2878–2882.

    Article  Google Scholar 

Download references

Acknowledgements

The tests reported herein were made possible by the financial support from National Natural Science Foundation of China (Grant Nos. 51708240 and 51678456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyan Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Lu, Y., Hu, J. et al. Experimental Study and Confinement Analysis on RC Stub Columns Strengthened with Circular CFST Under Axial Load. Int J Steel Struct 18, 1577–1588 (2018). https://doi.org/10.1007/s13296-018-0054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-018-0054-6

Keywords

Navigation