Skip to main content
Log in

How light traverses the inverted vertebrate retina

No flaw of nature

  • Review article
  • Published:
e-Neuroforum

Abstract

In our eyes, as in the eyes of all vertebrates, images of the environment are projected onto an inverted retina, where photons must pass through most of the retinal layers before being captured by the light-sensitive cells. Light scattering in these retinal layers must decrease the signal-to-noise ratio of the images and thus interfere with clear vision. Surprisingly however, our eyes display splendid visual abilities. This apparent contradiction could be resolved if intraretinal light scattering were to be minimized by built-in optical elements that facilitate light transmission through the tissue. Indeed, we were able to show that one function of radial glial (Müller) cells is to act as effective optical fibers in the living retina, bypassing the light-scattering structures in front of the light-sensitive cells. Each Müller cell serves as a ‘private’ light cable, providing one individual cone photoreceptor cell with its appropriate pixel of the environmental image, thus optimizing special resolution and visual acuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agte S, Junek S, Matthias S et al (2011) Müller glial cell-provided cellular light guidance through the vital guinea-pig retina. Biophys J 101:2611–2619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bass M (1995) Handbook of optics, volume I: fundamentals, techniques, and design. McGraw-Hill, New York

  3. Enoch JM (1961) Visualization of wave-guide modes in retinal receptors. Am J Ophthalmol 51:1107–1118

    Article  CAS  PubMed  Google Scholar 

  4. Enoch JM (1963) Optical properties of the retinal receptors. J Opt Soc Am 53:71–85

    Article  Google Scholar 

  5. Enoch JM, Glisman LE (1966) Physical and optical changes in excised retinal tissue. Resolution of retinal receptors as a fiber optic bundle. Invest Ophthamol Vis Sci 5:208–221

    Google Scholar 

  6. Franze K, Grosche J, Skatchkov SN et al (2007) Müller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci U S A 104:8287–8292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Goldsmith TH (1990) Optimization, constraint, and history in the evolution of eyes. Q Rev Biol 65:285–287

    Article  Google Scholar 

  8. Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, New York

  9. Puliafito CA, Hee MR, Lin CP et al (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102:217–229

    Article  CAS  PubMed  Google Scholar 

  10. Reichenbach A, Robinson S (1995) Phylogenetic constraints on retinal organization and development. Prog Retin Eye Res 15:139–171

    Article  Google Scholar 

  11. Reichenbach A, Bringmann A (2010) Müller cells in the healthy and diseased retina. Springer, New York

  12. Reichenbach A, Franze K, Agte S et al (2012) Live cells as optical fibers in the vertebrate retina. In: Yasin M, Arof H, Harun SW (eds) Selected topics on optical fiber technology. InTech, Rijeka, pp 247–270

  13. Rodieck RW (1973) The vertebrate retina: principles of structure and function. W. H. Freeman, San Francisco

  14. Solovei I, Kreysing M, Lanctôt C et al (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137:356–368

    Article  CAS  PubMed  Google Scholar 

  15. Tobey FL, Enoch JM, Scandrett JH (1975) Experimentally determined optical properties of goldfish cones and rods. Invest Ophthalmol 14:7–23

    PubMed  Google Scholar 

  16. Valentin G (1879) Ein Beitrag zur Kenntniss der Brechungsverhältnisse der Thiergewebe. Arch Ges Physiol 19:78–105

    Article  Google Scholar 

  17. Walls GL (1963) The Vertebrate Eye. Hafner Publishing Company, New York

  18. Winston A, Enoch JM (1971) Retinal cone receptor as an ideal light collector. J Opt Soc Am 61:1120–1122

    Article  CAS  PubMed  Google Scholar 

  19. Zernike F (1955) How I discovered phase contrast. Science 121:345–349

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Reichenbach.

Compliance with ethical guidelines

Compliance with ethical guidelines

Conflict of interest. S. Agte, M. Francke, K. Franze and A. Reichenbach state that there are no conflicts of interest.The accompanying manuscript does not include studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reichenbach, A., Agte, S., Francke, M. et al. How light traverses the inverted vertebrate retina. e-Neuroforum 5, 93–100 (2014). https://doi.org/10.1007/s13295-014-0054-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13295-014-0054-8

Keywords

Navigation