Skip to main content
Log in

Nature-based solutions potential for flood risk reduction under extreme rainfall events

  • Research Article
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Climate change will substantially increase extreme rainfall events, especially in the Tropics, enhancing flood risks. Such imminent risks require climate adaptation strategies to endure extreme rainfall and increase drainage systems. Here, we evaluate the potential of nature-based solutions by using an ecosystem service modeling approach, evaluating the impact of extreme rainfall events on flood risks in a large urban area and with a real-world land recovery plan. We evaluate the cost-effectiveness of four different land recovery scenarios and associated co-benefits, based on a gradient increase in area recovered and cost of implementation. Although the scenarios reveal increasing flood risk reduction and co-benefits along with greater proportion of land recovery, the most cost-effective scenario was the one with an intermediate land recovery where 30% of the study area would be reforested. We emphasize the striking benefits of nature-based solutions for flood risk reduction in cities, considering landscape scale and stakeholders’ needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alemaw, B.F., T.R. Chaoka, and N.T. Tafesse. 2020. Modelling of nature-based solutions (NBS) for urban water management—Investment and outscaling implications at basin and regional levels. Journal of Water Resource and Protection 12: 853–883.

    Article  Google Scholar 

  • Alves, A., B. Gersonius, Z. Kapelan, Z. Vojinovic, and A. Sanchez. 2019. Assessing the co-benefits of green-blue-grey infrastructure for sustainable urban flood risk management. Journal of Environmental Management 239: 244–254.

    Article  Google Scholar 

  • ANA. 2021. Curve Number da Base Hidrográfica Ottocodificada, Nota Técnica nº 46/2018/SPR, Agência Nacional de Águas. Disponível em https://metadados.snirh.gov.br/geonetwork/srv/api/records/d1c36d85-a9d5-4f6a-85f7-71c2dc801a67.

  • Bain, P.G., T.L. Milfont, Y. Kashima, M. Bilewicz, G. Doron, R.B. Garðarsdóttir, V.V. Gouveia, Y. Guan, et al. 2016. Co-benefits of addressing climate change can motivate action around the world. Nature Climate Change 6: 154–157. https://doi.org/10.1038/nclimate2814

    Article  Google Scholar 

  • Barcellos, C., and P.C. Sabroza. 2000. Socio-environmental determinants of the leptospirosis outbreak of 1996 in western Rio de Janeiro: A geographical approach. International Journal of Environmental Health Research 10: 301–313.

    Article  CAS  Google Scholar 

  • Bastin, J.F., Y. Finegold, C. Garcia, D. Mollicone, M. Rezende, D. Routh, C.M. Zohner, and T.W. Crowther. 2019. The global tree restoration potential. Science 366: 76–79.

    Article  Google Scholar 

  • Benini, R.M., F.E.B. Lenti, J.R.C. Tymus, A.P.M. Silva, and I. Isernhagen. 2017. Custos da restauração da vegetação nativa no Brasil. In Economia da restauração florestal = Forest restoration economy, ed. R.M. Benini and S. Adeodato, 20–37. São Paulo: The Nature Conservancy.

    Google Scholar 

  • Borgo, M.G., G.N. Tiepolo, L. Moretti, C. Zumbach, A.T. Klemz, H.L. Cavassani, H. Mansur, S. Bracale, et al. 2017. Pagamento por serviços ambientais como incentivo econômico. In Economia da restauração florestal = Forest restoration economy, ed. R.M. Benini and S. Adeodato, 52–63. São Paulo: The Nature Conservancy.

    Google Scholar 

  • Brancalion, P.H.S., R.A.G. Viani, B.B.N. Strassburg, and R.R. Rodrigues. 2012. Finding the money for tropical forest restoration. Unasylva 63: 41–50.

    Google Scholar 

  • Bustamante, M.M.C., J.S. Silva, A. Scariot, A.B. Sampaio, D.L. Mascia, E. Garcia, E. Sano, G.W. Fernandes, et al. 2019. Ecological restoration as a strategy for mitigating and adapting to climate change: Lessons and challenges from Brazil. Mitigation and Adaptation Strategies for Global Change 24: 1249–1270.

    Article  Google Scholar 

  • Carter, J. 2018. Urban climate change adaptation: Exploring the implications of future land cover scenarios. Cities 77: 73–80.

    Article  Google Scholar 

  • Chen, V., J.R.B. Brenes, F. Chapa, and J. Hack. 2021. Development and modelling of realistic retrofitted nature-based solution scenarios to reduce flood occurrence at the catchment scale. Ambio 50: 1462–1476. https://doi.org/10.1007/s13280-020-01493-8.

    Article  Google Scholar 

  • Cohen-Shacham, E., G. Walters, C. Janzen, and S. Maginnis, eds. 2016. Nature-based solutions to address global societal challenges, xiii + 97. Gland: IUCN.

    Google Scholar 

  • Crouzeilles, R., H.L. Beyer, L.M. Monteiro, R. Feltran-Barbieri, A.C.M. Pessôa, F.S.M. Barros, D.B. Lindenmayer, E.D.S.M. Lino, et al. 2020. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conservation Letters 13: 1–9.

    Article  Google Scholar 

  • Crouzeilles, R., M. Curran, M.S. Ferreira, D.B. Lindenmayer, C.E.V. Grelle, and J.M.R. Benayas. 2016. A global meta-analysis on the ecological drivers of forest restoration success. Nature Communications 7: 11666.

    Article  CAS  Google Scholar 

  • Crouzeilles, R., M.S. Ferreira, R.L. Chazdon, D.B. Lindenmayer, J.B.B. Sansevero, L. Monteiro, A. Iribarrem, A.E. Latawiec, et al. 2017. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances 3: 1–7.

    Article  Google Scholar 

  • Crouzeilles, R., E. Santiami, M. Rosa, L. Pugliese, P.H.S. Brancalion, R.R. Rodrigues, J.P. Metzger, M. Calmon, et al. 2019. There is hope for achieving ambitious Atlantic Forest restoration commitments. Perspectives in Ecology and Conservation 17: 80–83.

    Article  Google Scholar 

  • Dias, M.C.A., S.M. Saito, R.C.S. Alvalá, C. Stenner, G. Pinho, C.A. Nobre, M.R.S. Fonseca, C. Santos, et al. 2018. Estimation of exposed population to landslides and floods risk areas in Brazil, on an intra-urban scale. International Journal of Disaster Risk Reduction 31: 449–459.

    Article  Google Scholar 

  • Dodman, D., B. Hayward, M. Pelling, V. Castan Broto, W. Chow, E. Chu, R. Dawson, L. Khirfan, et al. 2022. Cities, settlements and key infrastructure. In Climate change 2022: Impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change, ed. H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, et al., 907–1040. Cambridge: Cambridge University Press.

    Google Scholar 

  • Dushkova, D., and D. Haase. 2020. Not simply green: Nature-based solutions as a concept and practical approach for sustainability studies and planning agendas in cities. Land 9: 1–37.

    Article  Google Scholar 

  • Egerer, M., D. Haase, T. McPhearson, N. Frantzeskaki, E. Andersson, H. Nagendra, and A. Ossola. 2021. Urban change as an untapped opportunity for climate adaptation. NPJ Urban Sustainability 1: 22.

    Article  Google Scholar 

  • Elmqvist, T., H. Setälä, S.N. Handel, S. van der Ploeg, J. Aronson, J.N. Blignaut, E. Gómez-Baggethun, D.J. Nowak, et al. 2015. Benefits of restoring ecosystem services in urban areas. Current Opinion in Environmental Sustainability 14: 101–108.

    Article  Google Scholar 

  • Golub, A., T. Hertel, H.-L. Lee, S. Rose, and B. Sohngen. 2009. The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry. Resource and Energy Economics 31: 299–319.

    Article  Google Scholar 

  • Grima, N., S.J. Singh, B. Smetschka, and L. Ringhofer. 2016. Payment for ecosystem services (PES) in Latin America: Analysing the performance of 40 case studies. Ecosystem Services 17: 24–32.

    Article  Google Scholar 

  • Hamel, P., A.D. Guerry, S. Polasky, B. Han, J.A. Douglass, M. Hamann, B. Janke, J.J. Kuiper, et al. 2021. Mapping the benefits of nature in cities with the InVEST software. NPJ Urban Sustainability 1: 25.

    Article  Google Scholar 

  • IBGE. 2012. Estudo inédito mostra moradores sujeitos a enchentes e deslizamentos. Disponível em: https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/21566-estudo-inedito-mostra-moradores-sujeitos-a-enchentes-e-deslizamentos.

  • IIED. 2022. Biocredits to finance nature and people: Emerging lessons. In ed. A. Ducros and P. Steele, p. 25 p. London: International Institute for Environment and Development (IIED). Available at: https://www.iied.org/21216iied. Assessed 10 November 2023.

  • INEA. 2010. Mapa de Áreas Potenciais para Restauração. Instituto Estadual do Ambiente. Disponível em: https://inea.maps.arcgis.com/home/item.html?id=e6e0896d6db040529fcb0792eb7695c0.

  • INEA. 2018. Mapa de uso e cobertura do solo do Estado do Rio de Janeiro para 2018. Instituto Estadual do Ambiente. Disponível em: https://inea.maps.arcgis.com/home/item.html?id=634cd01b3473409c96d87bb41caeb87e.

  • IPCC. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. In A special report of working groups I and II of the intergovernmental panel on climate change, ed. C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, et al., 582. Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. 2021. Summary for policymakers. In Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, ed. M. Delmotte, et al. Cambridge: Cambridge University Press.

    Google Scholar 

  • Joksimovic, D., and Z. Alam. 2014. cost efficiency of low impact development (LID) stormwater management practices. Procedia Engineering 89: 734–741.

    Article  Google Scholar 

  • Kabisch, N., N. Frantzeskaki, and R. Hansen. 2022. Principles for urban nature-based solutions. Ambio 51: 1388–1401. https://doi.org/10.1007/s13280-021-01685-w.

    Article  Google Scholar 

  • Kadaverugu, A., C.N. Rao, and G.K. Viswanadh. 2020. Quantification of flood mitigation services by urban green spaces using InVEST model: A case study of Hyderabad city, India. Modeling Earth Systems and Environment 7: 589–602.

    Article  Google Scholar 

  • Kasecker, T.P., M.B. Ramos-Neto, J.M.C. da Silva, and F.R. Scarano. 2018. Ecosystem-based adaptation to climate change: Defining hotspot municipalities for policy design and implementation in Brazil. Mitigation and Adaptation Strategies for Global Change 23: 981–993.

    Article  Google Scholar 

  • Kii, M. 2021. Projecting future populations of urban agglomerations around the world and through the 21st century. NPJ Urban Sustainability 1: 10.

    Article  Google Scholar 

  • Manes, S., and M.M. Vale. 2022. Achieving the Paris Agreement would substantially reduce climate change risks to biodiversity in Central and South America. Regional Environmental Change 22: 60.

    Article  Google Scholar 

  • Manes, S., I.R. Henud, and K. Tanizaki-Fonseca. 2022a. Climate change mitigation potential of Atlantic Forest. Mitigation and Adaptation Strategies for Global Change 27: 34.

    Article  Google Scholar 

  • Manes, S., M.M. Vale, A. Malecha, and A.P.F. Pires. 2022b. Nature-based Solutions promote climate change adaptation safeguarding ecosystem services. Ecosystem Services 55: 101439.

    Article  Google Scholar 

  • Manes, S., M.M. Vale, and A.P.F. Pires. 2022c. The effectiveness of climate action and land recovery across ecosystems, climatic zones and scales. Regional Environmental Change 22: 5.

    Article  Google Scholar 

  • Mishra, S.K., and V.P. Singh. 2003. SCS-CN method. In Soil conservation service curve number (SCS-CN) methodology. Water science and technology library, ed. S.K. Mishra and V. Singh, 42. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Myhre, G., K. Alterskjær, C. Stjern, Ø. Hodnebrog, L. Marelle, B. H. Samset, J. Sillmann, N. Schaller, et al. 2019. Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports 9: 1–10.

  • Niemeyer, J., F.S.M. Barros, D.S. Silva, R. Crouzeilles, and M.M. Vale. 2019. Planning forest restoration within private land holdings with conservation cobenefits at the landscape scale. Science of the Total Environment 717: 135262.

    Article  Google Scholar 

  • Pires, A.P.F., N.A.C. Marino, D.S. Srivastava, and V.F. Farjalla. 2016. Predicted rainfall changes disrupt trophic interactions in a tropical aquatic ecosystem. Ecology 97: 2750–2759.

    Article  Google Scholar 

  • Pires, A.P.F., C.L. Rezende, E.D. Assad, R. Loyola, and F.R. Scarano. 2017. Forest restoration can increase the Rio Doce watershed resilience. Perspectives in Ecology and Conservation 15: 187–193.

    Article  Google Scholar 

  • Pires, A.P.F., C.R. Soto, and F.R. Scarano. 2021. Strategies to reach global sustainability should take better account of ecosystem services. Ecosystem Services 49: 101292.

    Article  Google Scholar 

  • Pörtner, H.O., D.C. Roberts, H. Adams, C. Adler, P. Aldunce, E. Ali, R.A. Begum, R. Betts, et al. 2022. Summary for policy makers. In Climate change 2022: Impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change, ed. H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, et al., 907–1040. Cambridge: Cambridge University Press.

    Google Scholar 

  • Prado, R.B. 2010. Manejo e conservação do solo e da água no contexto das mudanças ambientais, 1 edn, ed. R.B. Prado, A.P.D. Turetta and A.G. Andrade. Rio de Janeiro: Embrapa Solos.

  • Quagliolo, C., E. Comino, and A. Pezzoli. 2021. Experimental flash floods assessment through urban flood risk mitigation (UFRM) model: The case study of ligurian coastal cities. Frontiers in Water 3: 1–16.

    Article  Google Scholar 

  • Rezende, C.L., F.R. Scarano, E.D. Assad, C.A. Joly, J.P. Metzger, B.B.N. Strassburg, M. Tabarelli, G.A. Fonseca, et al. 2018. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. PECON 16: 208–214.

    Google Scholar 

  • Rodrigues, R.R., R.A.F. Lima, S. Gandolfi, and A.G. Nave. 2009. On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biological Conservation 142: 1242–1251.

    Article  Google Scholar 

  • Rosenzweig, B., B.L. Ruddell, L. McPhillips, R. Hobbins, T. McPhearson, Z. Cheng, H. Chang, and Y. Kim. 2019. Developing knowledge systems for urban resilience to cloudburst rain events. Environmental Science and Policy 99: 150–159.

    Article  Google Scholar 

  • Ross C.W., L. Prihodko, J.Y. Anchang, S.S. Kumar, W. Ji, and N.P. Hanan. 2018. Global hydrologic soil groups (HYSOGs250m) for curve number-based runoff modeling. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1566 Available at: https://daac.ornl.gov/SOILS/guides/Global_Hydrologic_Soil_Group.html.

  • SEA/INEA. 2018. Plano de Adaptação Climática do Estado do Rio de Janeiro. Secretaria de Estado do Ambiente (SEA) e Instituto Estadual do Ambiente (INEA). Disponível em: http://centroclima.coppe.ufrj.br/images/documentos/Produto_11_PAERJ-Relat%C3%B3rio_Final.pdf.

  • Sharp R., J. Douglass, S. Wolny, K. Arkema, J. Bernhardt, W. Bierbower, N. Chaumont, D. Denu, et al. 2020. InVEST 3.10 user’s guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.

  • Soares, R.M.V., P.K. Lira, S. Manes, and M.M. Vale. 2023. A methodological framework for prioritizing habitat patches in urban ecosystems based on landscape functional connectivity. Urban Ecosystems 27: 147–157.

    Article  Google Scholar 

  • Song, C. 2022. Application of nature-based measures in China’s sponge city initiative: Current trends and perspectives. Nature-Based Solutions 2: 100010.

    Article  Google Scholar 

  • Strassburg B.B.N., H.L. Beyer, R. Crouzeilles, A. Iribarrem, F. Barros, M.F. de Siqueira, A. Sánchez-Tapia, A. Balmford, et al. 2019. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nature Ecology and Evolution 3: 62–70.

  • Turkelboom, F., R. Demeyer, L. Vranken, P. Becker, F. Raymaekers, and L. Smet. 2021. How does a nature-based solution for flood control compare to a technical solution? Case study evidence from Belgium. Ambio 50: 1431–1445. https://doi.org/10.1007/s13280-021-01548-4.

    Article  Google Scholar 

  • USDA. 2004. Hydrologic soil-cover complexes. In Part 630 hydrology national engineering handbook. Natural Resources Conservation Service, United States Department of Agriculture. Disponível em: https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17758.wba

  • Vale, M.M., P.A. Arias, G. Ortega, M. Cardoso, B.F.A. Oliveira, R. Loyola, and F.R. Scarano. 2021. Climate change and biodiversity in the atlantic forest: Best climatic models, predicted changes and impacts, and adaptation options. In The Atlantic forest: History, biodiversity, threats and opportunities of the mega-diverse forest, ed. M.C.M. Marques and C.E.V. Grelle, 253–269. Cham: Springer.

    Chapter  Google Scholar 

  • WWAP. 2018. The United Nations World Water Development report 2018: Nature-based solutions for water. Paris.

Download references

Acknowledgements

This paper was developed in the context of the Brazilian Research Network on Climate Change (Rede-CLIMA), with which all authors are affiliated. The authors also acknowledge the State Environmental Institute of Rio de Janeiro that gave the INEA Environmental Award (“Prêmio INEA de Meio Ambiente”) for this study in 2021.

Funding

SM received fellowships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior do Brasil (CAPES) (Grant no. 001) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro—Grant ‘Doutorado Nota 10’ (FAPERJ No. E-26/200.611/2021). We thank the National Council for Scientific and Technological Development (CNPq) for support to MMV (CNPq Grant No. 304309/2018-4 and 304908/2021-5) and APFP (Grant No. 423057/2021-9), and FAPERJ for support to MMV (Grant No. CNE E-26/202.647/2019) and APFP (Grant No. APQ1 2019 E-26/010.001939/2019 and APQ1-2021 SEI-260003/015411/2021). This paper was developed in the context of the Brazilian Research Network on Climate Change (Rede-CLIMA), with which all authors are affiliated, supported by FINEP (Grants No. 01.13.0353-00) and the National Institutes for Science and Technology in Ecology, Evolution and Biodiversity Conservation, supported by CNPq (Grant ID: 465610/2014-5) and FAPEG (Grant No. 201810267000023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Manes.

Ethics declarations

Conflict of interest

All co-authors have seen and agree with the contents of the manuscript and there are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1574 KB)

Supplementary file2 (XLSX 57 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manes, S., Vale, M.M. & Pires, A.P.F. Nature-based solutions potential for flood risk reduction under extreme rainfall events. Ambio (2024). https://doi.org/10.1007/s13280-024-02005-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13280-024-02005-8

Keywords

Navigation