Skip to main content
Log in

Modelling CO2 budget of mussel farms across the Mediterranean Sea

  • Research Article
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

The role of bivalve aquaculture as a carbon sink is highly debated, without a general consensus on the components to include in the budget. This study proposes to estimate the terms of the budget using a scope-for-growth-based model. The model was applied at 12 Mediterranean sites, with environmental forcings provided by operational oceanography data spanning over 12 years. Mussels were found to be slight sinks, with a limited variability across sites, if all components of the budget, i.e. accumulation in soft tissue, emissions associated with calcification and respiration, are included. The differences found among stations concerning the calcification and soft tissue contributions to the budget were found to be related to site-specific productivity and water chemistry parameters. This led to the identification of a set of meta-models, which could be used for relating the budget to local conditions, at a screening level, rendering them useful for optimal site selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://marine.copernicus.eu.

References

  • Alonso, A.A., X.A. Álvarez-Salgado, and L.T. Antelo. 2021. Assessing the impact of bivalve aquaculture on the carbon circular economy. Journal of Cleaner Production 279. https://doi.org/10.1016/j.jclepro.2020.123873.

  • Álvarez-Salgado, X.A., M.J. Fernández-Reiriz, I. Fuentes-Santos, L.T. Antelo, A.A. Alonso, and U. Labarta. 2022. CO2 budget of cultured mussels metabolism in the highly productive Northwest Iberian upwelling system. Science of the Total Environment 849: 157867. https://doi.org/10.1016/j.scitotenv.2022.157867.

    Article  CAS  Google Scholar 

  • Aubin, J., C. Fontaine, M. Callier, and E. Roque d’orbcastel. 2018. Blue mussel (Mytilus edulis) bouchot culture in Mont-St Michel Bay: potential mitigation effects on climate change and eutrophication. International Journal of Life Cycle Assessment 23: 1030–1041. https://doi.org/10.1007/s11367-017-1403-y.

    Article  CAS  Google Scholar 

  • Barrett, L.T., S.J. Theuerkauf, J.M. Rose, H.K. Alleway, S.B. Bricker, M. Parker, D.R. Petrolia, and R.C. Jones. 2022. Sustainable growth of non-fed aquaculture can generate valuable ecosystem benefits. Ecosystem Services 53: 101396. https://doi.org/10.1016/j.ecoser.2021.101396.

    Article  Google Scholar 

  • Bertolini, C., I. Bernardini, D. Brigolin, V. Matozzo, M. Milan, and R. Pastre. 2021. A bioenergetic model to address carbon sequestration potential of shellfish farming: example from Ruditapes philippinarum in the Venice lagoon. ICES Journal of Marine Science 78: 2082–2091. https://doi.org/10.1093/icesjms/fsab099.

    Article  Google Scholar 

  • Brigolin, D., G. Dal, F. Rampazzo, M. Giani, and R. Pastres. 2009. An individual-based population dynamic model for estimating biomass yield and nutrient fluxes through an off-shore mussel (Mytilus galloprovincialis) farm. Estuarine, Coastal and Shelf Science. https://doi.org/10.1016/j.ecss.2009.01.029.

    Article  Google Scholar 

  • Brigolin, D., C. Rabouille, B. Bombled, S. Colla, S. Vizzini, R. Pastres, and F. Pranovi. 2018. Modelling biogeochemical processes in sediments from the north western Adriatic Sea: response to enhanced particulate organic carbon fluxes. Biogeosciences 15: 1347–1366.

    Article  CAS  Google Scholar 

  • Carvalho, N., and J. Guillen. 2021. Aquaculture in the Mediterranean. IEMed Mediterranean Yearbook.

  • Christopoulos, K., N. Pospotikis, E. Kostopoulos, E. Kondili, and J.K. Kaldellis. 2018. Experimental analysis of the water salinity impact on the energy consumption of small desalination plants. Procedia Structural Integrity 10: 171–178. https://doi.org/10.1016/j.prostr.2018.09.025.

    Article  Google Scholar 

  • Duarte, P., M.J. Fernández-Reiriz, R. Filgueira, and U. Labarta. 2010. Modelling mussel growth in ecosystems with low suspended matter loads. Journal of Sea Research 64: 273–286. https://doi.org/10.1016/j.seares.2010.03.006.

    Article  Google Scholar 

  • Filgueira, R., C.J. Byron, L.A. Comeau, B. Costa-Pierce, P.J. Cranford, J.G. Ferreira, J. Grant, T. Guyondet, et al. 2015. An integrated ecosystem approach for assessing the potential role of cultivated bivalve shells as part of the carbon trading system The Danish Shellfish Centre-DTU Aqua, 7900 Nykøbing Mors, Denmark. Marine Ecology Progress Series 518: 281–287. https://doi.org/10.3354/meps11048.

    Article  CAS  Google Scholar 

  • Filgueira, R., T. Strohmeier, and Strand. 2019. Regulating services of bivalve molluscs in the context of the carbon cycle and implications for ecosystem valuation. Goods and Services of Marine Bivalves. https://doi.org/10.1007/978-3-319-96776-9_12.

    Article  Google Scholar 

  • Frankignoulle, M., C. Canon, and J.-P. Gattuso. 1994. Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnology and Oceanography 39: 458–462. https://doi.org/10.4319/lo.1994.39.2.0458.

    Article  CAS  Google Scholar 

  • Gernez, P., D. Doxaran, and L. Barillé. 2017. Shellfish aquaculture from Space: Potential of Sentinel2 to monitor tide-driven changes in turbidity, chlorophyll concentration and oyster physiological response at the scale of an oyster farm. Frontiers in Marine Science 4: 1–15. https://doi.org/10.3389/fmars.2017.00137.

    Article  Google Scholar 

  • Hily, C., J. Grall, L. Chauvaud, M. Lejart, and J. Clavier. 2013. CO2 generation by calcified invertebrates along rocky shores of Brittany, France. Marine and Freshwater Research 64: 91–101. https://doi.org/10.1071/MF12146.

    Article  CAS  Google Scholar 

  • Humphreys, M.P., C.J. Daniels, D.A. Wolf-Gladrow, T. Tyrrell, and E.P. Achterberg. 2018. On the influence of marine biogeochemical processes over CO2 exchange between the atmosphere and ocean. Marine Chemistry 199: 1–11. https://doi.org/10.1016/j.marchem.2017.12.006.

    Article  CAS  Google Scholar 

  • Jansen, H., and L. van den Bogaart. 2020. Blue carbon by marine bivalves: Perspective of carbon sequestration by cultured and wild bivalve stocks in the Dutch coastal areas (No. C116/20). Wageningen Marine Research.

  • Jones, A.R., H.K. Alleway, D. McAfee, P. Reis-Santos, S.J. Theuerkauf, and R.C. Jones. 2022. Climate-friendly seafood: the potential for emissions reduction and carbon capture in marine aquaculture. BioScience 72: 123–143. https://doi.org/10.1093/biosci/biab126.

    Article  Google Scholar 

  • Labrie, M.S., M.A. Sundermeyer, and B.L. Howes. 2022. Modelling the spatial distribution of oyster (Crassostrea virginica) biodeposits settling from suspended aquaculture. Estuaries and Coasts 45: 2690–2709. https://doi.org/10.1007/s12237-022-01096-4.

    Article  CAS  Google Scholar 

  • Le, C., J.C. Lehrter, C. Hu, H.L. MacIntyre, and M.W. Beck. 2017. Satellite observation of particulate organic carbon dynamics onthe Louisiana continental shelf. Journal of Geophysical Research: Oceans 122: 555–569. https://doi.org/10.1038/175238c0.

    Article  CAS  Google Scholar 

  • Lee, H.Z.L., I.M. Davies, J.M. Baxter, K. Diele, and W.G. Sanderson. 2020. Missing the full story: first estimates of carbon deposition rates for the European flat oyster, Ostrea edulis. Aquatic Conservation-Marine and Freshwater Ecosystems 30: 2076–2086. https://doi.org/10.1002/aqc.3402.

    Article  Google Scholar 

  • Martinez, M., M.C. Mangano, G. Maricchiolo, L. Genovese, A. Mazzola, and G. Sarà. 2018. Measuring the effects of temperature rise on Mediterranean shellfish aquaculture. Ecological Indicators 88: 71–78. https://doi.org/10.1016/j.ecolind.2018.01.002.

    Article  Google Scholar 

  • Morris, J.P., and M.P. Humphreys. 2019. Modelling seawater carbonate chemistry in shellfish aquaculture regions: insights into CO2 release associated with shell formation and growth. Aquaculture 501: 338–344. https://doi.org/10.1016/j.aquaculture.2018.11.028.

    Article  CAS  Google Scholar 

  • Moutier, W., S.J. Thomalla, S. Bernard, G. Wind, T.J. Ryan-Keogh, and M.E. Smith. 2019. Evaluation of chlorophyll-a and POC MODIS aqua products in the Southern Ocean. Remote Sensing 11: 1–18. https://doi.org/10.3390/rs11151793.

    Article  Google Scholar 

  • Munari, C., E. Rossetti, and M. Mistri. 2013. Shell formation in cultivated bivalves cannot be part of carbon trading systems: a study case with Mytilus galloprovincialis. Marine Environmental Research. https://doi.org/10.1016/j.marenvres.2013.10.006.

    Article  Google Scholar 

  • Palmer, S.C.J., P.M. Gernez, Y. Thomas, S. Simis, P.I. Miller, P. Glize, and L. Barillé. 2020. Remote sensing-driven pacific oyster (Crassostrea gigas) growth modeling to inform offshore aquaculture site selection. Frontiers in Marine Science 6: 802. https://doi.org/10.3389/fmars.2019.00802.

    Article  Google Scholar 

  • Ray, N.E., T.J. Maguire, A.N. Al-Haj, M.C. Henning, and R.W. Fulweiler. 2019. Low greenhouse gas emissions from oyster aquaculture. Environmental Science and Technology 53: 9118–9127. https://doi.org/10.1021/acs.est.9b02965.

    Article  CAS  Google Scholar 

  • Stramski, D., R.A. Reynolds, M. Babin, S. Kaczmarek, M.R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, et al. 2008. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences 5: 171–201. https://doi.org/10.5194/bg-5-171-2008.

    Article  CAS  Google Scholar 

  • Suplicy, F.M. 2020. A review of the multiple benefits of mussel farming. Reviews in Aquaculture 12: 204–223. https://doi.org/10.1111/raq.12313.

    Article  Google Scholar 

  • Tamburini, E., E. Turolla, M. Lanzoni, D. Moore, and G. Castaldelli. 2022. Manila clam and Mediterranean mussel aquaculture is sustainable and a net carbon sink. Science of the Total Environment 848: 157508. https://doi.org/10.1016/j.scitotenv.2022.157508.

    Article  CAS  Google Scholar 

  • The Nature Conservancy. 2021. Global principles of restorative aquaculture. Arlington, VA.

  • Theuerkauf, S.J., L.T. Barrett, H.K. Alleway, B.A. Costa-Pierce, A. Gelais, and R.C. Jones. 2021. Habitat value of bivalve shellfish and seaweed aquaculture for fish and invertebrates: pathways, synthesis and next steps. Reviews in Aquaculture. https://doi.org/10.1111/raq.12584.

    Article  Google Scholar 

  • Theuerkauf, S.J., J.A. Morris, T.J. Waters, L.C. Wickliffe, H.K. Alleway, and R.C. Jones. 2019. A global spatial analysis reveals where marine aquaculture can benefit nature and people. PLoS ONE 14: 1–29. https://doi.org/10.1371/journal.pone.0222282.

    Article  CAS  Google Scholar 

  • van den Burg, S.W.K., E.E.W. Termeer, M. Skirtun, M. Poelman, J.A. Veraart, and T. Selnes. 2022. Exploring mechanisms to pay for ecosystem services provided by mussels, oysters and seaweeds. Ecosystem Services 54: 101407. https://doi.org/10.1016/j.ecoser.2022.101407.

    Article  Google Scholar 

  • van der Schatte Olivier, A., L. Jones, L. Le Vay, M. Christie, J. Wilson, and S.K. Malham. 2020. A global review of the ecosystem services provided by bivalve aquaculture. Reviews in Aquaculture 12: 3–25. https://doi.org/10.1111/raq.12301.

    Article  Google Scholar 

  • Wood, S.N. 2006. Generalized additive models: an introduction with R. Boca Raton: Chapman and Hall.

    Book  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Matthew Humphreys for meaningful discussions on the topic and to the anonymous reviewers for helpful comments.

Funding

CB acknowledges funding provided by the Marie Curie-Sklodowska individual fellowship MAREA (GA 886037). DB acknowledges funding provided by the Interreg Italy-Croatia project CASCADE on integrated management of Adriatic Sea coastal ecosystems and a grant from IUAV University “MERGE: integrated remote sensing for monitoring and management of the territory”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilla Bertolini.

Ethics declarations

Conflict of interest

The authors have no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 348 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertolini, C., Pastres, R. & Brigolin, D. Modelling CO2 budget of mussel farms across the Mediterranean Sea. Ambio 52, 2023–2033 (2023). https://doi.org/10.1007/s13280-023-01900-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-023-01900-w

Keywords

Navigation