Skip to main content

Advertisement

Log in

Misleading estimates of economic impacts of biological invasions: Including the costs but not the benefits

  • Review
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

The economic costs of non-indigenous species (NIS) are a key factor for the allocation of efforts and resources to eradicate or control baneful invasions. Their assessments are challenging, but most suffer from major flaws. Among the most important are the following: (1) the inclusion of actual damage costs together with various ancillary expenditures which may or may not be indicative of the real economic damage due to NIS; (2) the inclusion of the costs of unnecessary or counterproductive control initiatives; (3) the inclusion of controversial NIS-related costs whose economic impacts are questionable; (4) the assessment of the negative impacts only, ignoring the positive ones that most NIS have on the economy, either directly or through their ecosystem services. Such estimates necessarily arrive at negative and often highly inflated values, do not reflect the net damage and economic losses due to NIS, and can significantly misguide management and resource allocation decisions. We recommend an approach based on holistic costs and benefits that are assessed using likely scenarios and their counter-factual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. (http://www.iucngisd.org/gisd/species.php?sc=325; accessed 19 September 2021)

  2. (https://www.selinawamucii.com/insights/prices/united-states-of-america/carp-fish/; accessed 28 November 2021)

References

  • Aagaard, K., and J.L. Lockwood. 2016. Severe and rapid population declines in exotic birds. Biological Invasions 18: 1667–1678.

    Article  Google Scholar 

  • Albertson, L.K., M.J. MacDonald, B.B. Tumolo, M.A. Briggs, Z. Maguire, S. Quinn, J.A. Sanchez-Ruiz, J. Veneros, et al. 2021. Uncovering patterns of freshwater positive interactions using meta-analysis: Identifying the roles of common participants, invasive species and environmental context. Ecology Letters 24: 594–607.

    Article  Google Scholar 

  • Bang, A., R. Cuthbert, P. Haubrock, R. Fernandez, D. Moodley, C. Diagne, A. Turbelin, A.K. Banerjee, et al. 2021. Fragmented yet high economic costs of biological invasions in India. Research Square. https://doi.org/10.21203/rs.3.rs-358099/v1.

    Article  Google Scholar 

  • Bellard, C., P. Cassey, and T.M. Blackburn. 2016. Alien species as a driver of recent extinctions. Biology Letters 12: 20150623.

    Article  Google Scholar 

  • Bergstrom, D.M., A. Lucieer, K. Kiefer, J. Wasley, L. Belbin, T.K. Pedersen, and S.L. Chown. 2009. Indirect effects of invasive species removal devastate World Heritage Island. Journal of Applied Ecology 46: 73–81.

    Article  Google Scholar 

  • Boltovskoy, D., N. Correa, L.E. Burlakova, A.Y. Karatayev, E.V. Thuesen, F. Sylvester, and E.M. Paolucci. 2021. Traits and impacts of introduced species: A quantitative review of meta-analyses. Hydrobiologia 848: 2225–2258.

    Article  Google Scholar 

  • Boltovskoy, D., M. Xu, and D. Nakano. 2015. Impacts of Limnoperna fortunei on man-made structures and control strategies: General overview. In Limnoperna fortunei: The ecology, distribution and control of a swiftly spreading invasive fouling mussel, ed. D. Boltovskoy, 375–393. Berlin: Springer.

    Google Scholar 

  • Bonanno, G. 2016. Alien species: To remove or not to remove? That is the question. Environmental Science & Policy 59: 67–73.

    Article  Google Scholar 

  • Born, W., F. Rauschmayer, and I. Bräuer. 2005. Economic evaluation of biological invasions—A survey. Ecological Economics 55: 321–336.

    Article  Google Scholar 

  • Brown, J.H., and D.F. Sax. 2004. An essay on some topics concerning invasive species. Austral Ecology 29: 530–536.

    Article  Google Scholar 

  • Bruestle, E., C. Karboski, A. Hussey, A. Fisk, K. Mehler, C. Pennuto, and D. Gorsky. 2018. Novel trophic interaction between lake sturgeon (Acipenser fulvescens) and non-native species in an altered food web. Canadian Journal of Fisheries and Aquatic Sciences 76: 6–14.

    Article  CAS  Google Scholar 

  • Buchholz, S., and I. Kowarik. 2019. Urbanisation modulates plant-pollinator interactions in invasive vs. native plant species. Scientific Reports 9: 6375.

    Article  CAS  Google Scholar 

  • Bullock, C., C. Kretsch, and E. Candon. 2008. The economic and social aspects of biodiversity. Benefits and costs of biodiversity in Ireland. The Stationery Office, Dublin, Dublin (Ireland), pp. 1–195.

  • Burkett, E.M., and D.J. Jude. 2015. Long-term impacts of invasive round goby Neogobius melanostomus on fish community diversity and diets in the St. Clair River, Michigan. Journal of Great Lakes Research 41: 862–872.

    Article  Google Scholar 

  • Burlakova, L.E., B.L. Tulumello, A.Y. Karatayev, R.A. Krebs, D.W. Schloesser, W.L. Paterson, T.A. Griffith, M.W. Scott, et al. 2014. Competitive replacement of invasive congeners may relax impact on native species: Interactions among zebra, quagga, and native unionid mussels. PLoS ONE 9: e114926.

    Article  CAS  Google Scholar 

  • Caddy, J.F. 1992. Rehabilitation of natural resources. Environmental management and protection of the Black Sea, Technical Experts Meeting, 20–21 May, Constanta, Romania.

  • Cassini, M.H. 2020. A review of the critics of invasion biology. Biological Reviews 95: 1467–1478.

    Article  Google Scholar 

  • Cataldo, D. 2015. Trophic relationships of Limnoperna fortunei with adult fishes. In Limnoperna fortunei: The ecology, distribution and control of a swiftly spreading invasive fouling mussel, ed. D. Boltovskoy, 231–248. Berlin: Springer.

    Google Scholar 

  • Cataldo, D., A. Vinocur, I. O’Farrell, E.M. Paolucci, V. Leites, and D. Boltovskoy. 2012. The introduced bivalve Limnoperna fortunei boosts Microcystis growth in Salto Grande Reservoir (Argentina): Evidence from mesocosm experiments. Hydrobiologia 680: 25–38.

    Article  CAS  Google Scholar 

  • Chew, M.K. 2015. Ecologists, environmentalists, experts, and the invasion of the ‘Second Greatest Threat.’ International Review of Environmental History 1: 7–40.

    Article  Google Scholar 

  • Connelly, N.A., C.R. O’Neill, B.A. Knuth, and T.L. Brown. 2007. Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities. Environmental Management 40: 105–112.

    Article  Google Scholar 

  • Correa, N., R.C. Guiaşu, and D. Boltovskoy. 2021. Invasion biology: Evidence, assumptions, and conservationism. Anales De La Academia Nacional De Ciencias Exactas, Físicas y Naturales (argentina) 72: 171–215.

    Google Scholar 

  • Courchamp, F., S. Caut, E. Bonnaud, K. Bourgeois, E. Angulo, and Y. Watari. 2011. Eradication of alien invasive species: Surprise effects and conservation successes. In Island invasives: Eradication and management, ed. C.R. Veitch, M.N. Clout, and D.R. Towns, 285–289. Gland: IUCN.

    Google Scholar 

  • CSIRO - Commonwealth Scientific and Industrial Research Organisation. 2021. Biological control of rabbits. https://www.csiro.au/en/research/animals/pests/biological-control-of-rabbits. Accessed 17 May 2021.

  • Culver, C.S., S.C. Ginther, D. Daft, L. Johnson, and A.J. Brooks. 2019. An Integrated pest management tactic for quagga mussels: Site-specific application of fish biological control agents. North American Journal of Fisheries Management 41: 329–343.

    Article  Google Scholar 

  • Cuthbert, R.N., C. Diagne, P.J. Haubrock, A.J. Turbelin, and F. Courchamp. 2021. Are the “100 of the world’s worst” invasive species also the costliest? Biological Invasions. https://doi.org/10.1007/s10530-021-02568-7.

    Article  Google Scholar 

  • David, P., E. Thébault, O. Anneville, P.F. Duyck, E. Chapuis, and N. Loeuille. 2017. Impacts of invasive species on food webs: A review of empirical data. In Networks of invasion: A synthesis of concepts, ed. D.A. Bohan, A.J. Dumbrell, and F. Massol, 1–60. Amsterdam: Elsevier.

    Google Scholar 

  • Davis, M.A. 2009. Invasion biology, 1–244. New York: Oxford University Press.

    Google Scholar 

  • Dean, K.R., F. Krauer, L. Walløe, O.C. Lingjærde, B. Bramanti, N.C. Stenseth, and B.V. Schmid. 2018. Human ectoparasites and the spread of plague in Europe during the Second Pandemic. Proceedings of the National Academy of Sciences 115: 1304.

    Article  CAS  Google Scholar 

  • Diagne, C., J.A. Catford, F. Essl, M.A. Nuñez, and F. Courchamp. 2020a. What are the economic costs of biological invasions? A complex topic requiring international and interdisciplinary expertise. NeoBiota 63: 25–37.

    Article  Google Scholar 

  • Diagne, C., B. Leroy, R.E. Gozlan, A.C. Vaissiere, C. Assailly, L. Nuninger, D. Roiz, F. Jourdain, et al. 2020b. InvaCost, a public database of the economic costs of biological invasions worldwide. Scientific Data 7: 277.

    Article  CAS  Google Scholar 

  • Diagne, C., B. Leroy, A.-C. Vaissière, R.E. Gozlan, D. Roiz, I. Jarić, J.-M. Salles, C.J.A. Bradshaw, et al. 2021. High and rising economic costs of biological invasions worldwide. Nature. https://doi.org/10.1038/s41586-021-03405-6.

    Article  Google Scholar 

  • Dickie, I.A., B.M. Bennett, L.E. Burrows, M.A. Nuñez, D.A. Peltzer, A. Porté, D.M. Richardson, M. Rejmánek, et al. 2014. Conflicting values: Ecosystem services and invasive tree management. Biological Invasions 16: 705–719.

    Article  Google Scholar 

  • Dionisio Pires, L.M., B.W. Ibelings, and E. van Donk. 2010. Zebra mussels as a potential tool in the restoration of eutrophic shallow lakes, dominated by toxic cyanobacteria. In The zebra mussel in Europe, ed. G. van der Velde, S. Rajagopal, and A. Bij de Vaate, 361–372. Kerkwerve: Backhuys Publishers.

    Google Scholar 

  • Doherty, T.S., R.A. Davis, E.J.B. van Etten, D. Algar, N. Collier, C.R. Dickman, G. Edwards, P. Masters, et al. 2015. A continental-scale analysis of feral cat diet in Australia. Journal of Biogeography 42: 964–975.

    Article  Google Scholar 

  • Doherty, T.S., A.S. Glen, D.G. Nimmo, E.G. Ritchie, and C.R. Dickman. 2016. Invasive predators and global biodiversity loss. Proceedings of the National Academy of Sciences of the United States of America 113: 11261–11265.

    Article  CAS  Google Scholar 

  • Duchini, D., D. Boltovskoy, and F. Sylvester. 2018. The invasive freshwater bivalve Limnoperna fortunei in South America: Multiannual changes in its predation and effects on associated benthic invertebrates. Hydrobiologia 817: 431–446.

    Article  Google Scholar 

  • Dueñas, M.-A., H.J. Ruffhead, N.H. Wakefield, P.D. Roberts, D.J. Hemming, and H. Diaz-Soltero. 2018. The role played by invasive species in interactions with endangered and threatened species in the United States: A systematic review. Biodiversity and Conservation 27: 3171–3183.

    Article  Google Scholar 

  • Essl, F., S. Dullinger, P. Genovesi, P.E. Hulme, J.M. Jeschke, S. Katsanevakis, I. Kühn, B. Lenzner, et al. 2019. A Conceptual framework for range-expanding species that track human-induced environmental change. BioScience 69: 908–919.

    Article  Google Scholar 

  • Ewel, J.J., D.J. O’Dowd, J. Bergelson, C.C. Daehler, C.M. D’Antonio, L.D. Gomez, D.R. Gordon, R.J. Hobbs, et al. 1999. Deliberate introductions of species: Research needs. Benefits can be reaped, but risks are high. BioScience 49: 619–630.

    Article  Google Scholar 

  • FAO. 2021. European price report, 1–21. Rome: Food and Agriculture Organization of te United Nations.

    Google Scholar 

  • Fera, S.A., M.D. Rennie, and E.S. Dunlop. 2017. Broad shifts in the resource use of a commercially harvested fish following the invasion of dreissenid mussels. Ecology 98: 1681–1692.

    Article  Google Scholar 

  • Gallardo, B., M. Clavero, M.I. Sanchez, and M. Vilà. 2016. Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology 22: 151–163.

    Article  Google Scholar 

  • Gbèdomon, R.C., V.K. Salako, and M. Schlaepfer. 2020. Diverse views among scientists on non-native species. NeoBiota 54: 49–69.

    Article  Google Scholar 

  • Gering, E., D. Incorvaia, R. Henriksen, J. Conner, T. Getty, and D. Wright. 2019. Getting back to nature: Feralization in animals and plants. Trends in Ecology & Evolution 34: 1137–1151.

    Article  Google Scholar 

  • González-Bergonzoni, I., I. Silva, F. Teixeira de Mello, A. D’Anatro, L. Bocardi, S. Stebniki, E. Brugnoli, G. Tesitore, et al. 2020. Evaluating the role of predatory fish on the invasion of the Asian golden mussel (Limnoperna fortunei) in a subtropical river. Journal of Applied Ecology 57: 717–728.

    Article  CAS  Google Scholar 

  • Gozlan, R.E. 2017. Interference of non-native species with fisheries and aquaculture. In Impact of biological invasions on ecosystem services, ed. M. Vilà and P.H. Hulme, 119–137. Berlin: Springer.

    Chapter  Google Scholar 

  • Granse, D., S. Suchrow, and K. Jensen. 2021. Long-term invasion dynamics of Spartina increase vegetation diversity and geomorphological resistance of salt marshes against sea level rise. Biological Invasions 23: 871–883.

    Article  Google Scholar 

  • Gu, D.E., J.W. Wang, M. Xu, X.D. Mu, H. Wei, F.D. Yu, M. Fang, X.J. Wang, et al. 2022. Does aquaculture aggravate exotic fish invasions in the rivers of southern China? Aquaculture 547: 737492.

    Article  Google Scholar 

  • Guerin, G.R., I. Martín-Forés, B. Sparrow, and A.J. Lowe. 2018. The biodiversity impacts of non-native species should not be extrapolated from biased single-species studies. Biodiversity and Conservation 27: 785–790.

    Article  Google Scholar 

  • Guiaşu, R.C. 2016. Non-native species and their role in the environment: The need for a broader perspective, 1–316. Leiden: Brill.

    Book  Google Scholar 

  • Guiaşu, R.C., and C.W. Tindale. 2018. Logical fallacies and invasion biology. Biology & Philosophy 33: 34.

    Article  Google Scholar 

  • Gurevitch, J., and D.K. Padilla. 2004. Are invasive species a major cause of extinctions? Trends in Ecology & Evolution 19: 470–474.

    Article  Google Scholar 

  • Gürtler, R.E., V. Martín Izquierdo, G. Gil, M. Cavicchia, and A. Maranta. 2017. Coping with wild boar in a conservation area: Impacts of a 10-year management control program in north-eastern Argentina. Biological Invasions 19: 11–24.

    Article  Google Scholar 

  • Guzman-Novoa, E., N. Morfin, A. De la Mora, J.O. Macías-Macías, J.M. Tapia-González, F. Contreras-Escareño, C.A. Medina-Flores, A. Correa-Benítez, et al. 2020. The process and outcome of the africanization of honey bees in Mexico: Lessons and future directions. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2020.608091.

    Article  Google Scholar 

  • Hanley, N., and C. Perrings. 2019. The economic value of biodiversity. Annual Review of Resource Economics 11: 355–375.

    Article  Google Scholar 

  • Hanley, N., and M. Roberts. 2019. The economic benefits of invasive species management. People and Nature 1: 124–137.

    Article  Google Scholar 

  • Haubrock, P.J., C. Bernery, R.N. Cuthbert, C. Liu, M. Kourantidou, B. Leroy, A.J. Turbelin, A.M. Kramer, et al. 2022. Knowledge gaps in economic costs of invasive alien fish worldwide. Science of the Total Environment 803: 149875.

    Article  CAS  Google Scholar 

  • Haubrock, P.J., R.N. Cuthbert, A. Ricciardi, C. Diagne, and F. Courchamp. 2021. Massive global economic costs of invasive macrofouling freshwater bivalves. Research Square. https://doi.org/10.21203/rs.3.rs-389696/v1.

    Article  Google Scholar 

  • Hayranto, D. 2018. Changes in the Lake Mendota food web composition: Predation of invasive zebra mussel (Dreissena polymorpha) veligers by native water fleas (Daphnia pulicaria), Internship Report 326, University of Madison, Center for Limnology. https://scholarlyrepository.miami.edu/rsmas_intern_reports/326.

  • Hernando, M., M. De Troch, F. de la Rosa, and L. Giannuzzi. 2021. Fatty acid response of the invasive bivalve Limnoperna fortunei fed with Microcystis aeruginosa exposed to high temperature. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 240: 108925.

    CAS  Google Scholar 

  • Hershner, C., and K.J. Havens. 2008. Managing invasive aquatic plants in a changing system: Strategic consideration of ecosystem services. Conservation Biology 22: 544–550.

    Article  Google Scholar 

  • Hoffmann, R., C.-J. Lagerkvist, M.H. Gustavsson, and B.S. Holst. 2019. Economic perspective on the value of cats and dogs. Society & Animals 27: 595–613.

    Article  Google Scholar 

  • Howard, P.L. 2019. Human adaptation to invasive species: A conceptual framework based on a case study metasynthesis. Ambio 48: 1401–1430. https://doi.org/10.1007/s13280-019-01297-5

    Article  Google Scholar 

  • Hui, C., and D.M. Richardson. 2017. Invasion dynamics, 1–322. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Ilo, O.P., M.D. Simatele, S.P.L. Nkomo, N.M. Mkhize, and N.G. Prabhu. 2020. The benefits of water hyacinth (Eichhornia crassipes) for Southern Africa: A review. Sustainability 12: 9222.

    Article  CAS  Google Scholar 

  • Jeppesen, E., D. Trolle, T.A. Davidson, R. Bjerring, M. Søndergaard, L.S. Johansson, T.L. Lauridsen, A. Nielsen, et al. 2015. Major changes in CO2 efflux when shallow lakes shift from a turbid to a clear water state. Hydrobiologia 778: 33–44.

    Article  CAS  Google Scholar 

  • Jernelöv, A. 2017. The long-term fate of invasive species. Aliens forever or integrated immigrants with time?, 1–296. Cham: Springer.

    Book  Google Scholar 

  • Johnstone, R.E., T. Kirkby, and K. Sarti. 2017. The distribution, status, movements and diet of the forest red-tailed black cockatoo in the south-west with emphasis on the greater Perth region, Western Australia. Western Australian Naturalist 30: 193–219.

    Google Scholar 

  • Juncos, R., D. Milano, P.J. Macchi, and P.H. Vigliano. 2015. Niche segregation facilitates coexistence between native and introduced fishes in a deep Patagonian lake. Hydrobiologia 747: 53–67.

    Article  CAS  Google Scholar 

  • Karatayev, A.Y., D. Boltovskoy, L.E. Burlakova, and D.K. Padilla. 2015. Parallels and contrasts between Limnoperna fortunei and Dreissena species. In Limnoperna fortunei: The ecology, distribution and control of a swiftly spreading invasive fouling mussel, ed. D. Boltovskoy, 261–297. Berlin: Springer.

    Google Scholar 

  • Karatayev, A.Y., L.E. Burlakova, K. Mehler, R.P. Barbiero, E.K. Hinchey, P.D. Collingsworth, K.E. Kovalenko, and G. Warren. 2018. Life after Dreissena: The decline of exotic suspension feeder may have significant impacts on lake ecosystems. Journal of Great Lakes Research 44: 650–659.

    Article  CAS  Google Scholar 

  • Karatayev, A.Y., L.E. Burlakova, K. Mehler, A.K. Elgin, L.G. Rudstam, J.M. Watkins, and M. Wick. 2020. Dreissena in Lake Ontario 30 years post-invasion. Journal of Great Lakes Research. https://doi.org/10.1016/j.jglr.2020.11.010.

    Article  Google Scholar 

  • Karatayev, A.Y., L.E. Burlakova, and D.K. Padilla. 2002. Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers. In Invasive aquatic species of Europe: Distribution, impacts and management, ed. E. Leppäkoski, S. Gollasch, and S. Olenin, 433–446. Alphen aan den Rijn: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Katsanevakis, S., I. Wallentinus, A. Zenetos, E. Leppäkoski, M.E. Çinar, B. Oztürk, M. Grabowski, D. Golani, et al. 2014. Impacts of invasive alien marine species on ecosystem services and biodiversity: A pan-European review. Aquatic Invasions 9: 391–423.

    Article  Google Scholar 

  • Kenis, M., B.P. Hurley, A.E. Hajek, and M.J.W. Cock. 2017. Classical biological control of insect pests of trees: Facts and figures. Biological Invasions 19: 3401–3417.

    Article  Google Scholar 

  • Kideys, A.E. 2002. Fall and rise of the Black Sea ecosystem. Science 297: 1482–1484.

    Article  CAS  Google Scholar 

  • Kopf, R.K., D.G. Nimmo, P. Humphries, L.J. Baumgartner, M. Bode, N.R. Bond, A.E. Byrom, J. Cucherousset, et al. 2017. Confronting the risks of large-scale invasive species control. Nature Ecology & Evolution 1: 0172.

    Article  Google Scholar 

  • Korsu, K., A. Huusko, and T. Muotka. 2010. Impacts of invasive stream salmonids on native fish: Using meta-analysis to summarize four decades of research. Boreal Environment Research 15: 491–500.

    Google Scholar 

  • Kull, C.A., C.M. Shackleton, P.J. Cunningham, C. Ducatillon, J.-M. Dufour-Dror, K.J. Esler, J.B. Friday, A.C. Gouveia, et al. 2011. Adoption, use and perception of Australian acacias around the world. Diversity and Distributions 17: 822–836.

    Article  Google Scholar 

  • Lagrue, C., T. Podgorniak, A. Lecerf, and L. Bollache. 2014. An invasive species may be better than none: Invasive signal and native noble crayfish have similar community effects. Freshwater Biology 59: 1982–1995.

    Article  Google Scholar 

  • Li, J., V. Ianaiev, A. Huff, J. Zaluskya, T. Ozersky, and S. Katsev. 2021. Benthic invaders control the phosphorus cycle in the world’s largest freshwater ecosystem. Proceedings of the National Academy of Sciences of the United States of America 118: e2008223118.

    Article  CAS  Google Scholar 

  • Livanis, G., and C.B. Moss. 2010. The effect of Africanized honey bees on honey production in the United States: An informational approach. Ecological Economics 69: 895–904.

    Article  Google Scholar 

  • Long, J.L. 2003. Introduced mammals of the world. Their history, distribution and influence, 1–589. Collingwood: Csiro Publishing.

    Book  Google Scholar 

  • Loss, S.R., T. Will, and P.P. Marra. 2013. The impact of free-ranging domestic cats on wildlife of the United States. Nature Communications 4: 1396.

    Article  CAS  Google Scholar 

  • Lundgren, E.J., D. Ramp, J. Rowan, O. Middleton, S.D. Schowanek, O. Sanisidro, S.P. Carroll, M. Davis, et al. 2020. Introduced herbivores restore Late Pleistocene ecological functions. Proceedings of the National Academy of Sciences 117: 7871.

    Article  CAS  Google Scholar 

  • Lurgi, M., E.G. Ritchie, D.A. Fordham, and J. Frair. 2018. Eradicating abundant invasive prey could cause unexpected and varied biodiversity outcomes: The importance of multispecies interactions. Journal of Applied Ecology 55: 2396–2407.

    Article  Google Scholar 

  • MacClagan, S.J., T.D. Coates, and E.G. Ritchie. 2018. Don’t judge habitat on its novelty: Assessing the value of novel habitats for an endangered mammal in a peri-urban landscape. Biological Conservation 223: 11–18.

    Article  Google Scholar 

  • Mackie, G.L., and R. Claudi. 2010. Monitoring and control of macrofouling mollusks in fresh water systems, 1–508. Boca Raton: CRC Press.

    Google Scholar 

  • Maggi, M., K. Antúnez, C. Invernizzi, P. Aldea, M. Vargas, P. Negri, C. Brasesco, D. De Jong, et al. 2016. Honeybee health in South America. Apidologie 47: 835–854.

    Article  Google Scholar 

  • Marbuah, G., I.-M. Gren, and B. McKie. 2014. Economics of harmful invasive species: A review. Diversity 6: 500–523.

    Article  Google Scholar 

  • Martin, M. 2014. The gardener and the fisherman in the globalization: The Inle Lake (Myanmar), a region under transition. MSc Thesis, University Lyon 2 Lumière, pp.

  • Martinez-Cillero, R., S. Willcock, A. Perez-Diaz, E. Joslin, P. Vergeer, and K.S. Peh. 2019. A practical tool for assessing ecosystem services enhancement and degradation associated with invasive alien species. Ecology and Evolution 9: 3918–3936.

    Article  Google Scholar 

  • McLaughlan, C., and D.C. Aldridge. 2013. Cultivation of zebra mussels (Dreissena polymorpha) within their invaded range to improve water quality in reservoirs. Water Research 47: 4357–4569.

    Article  CAS  Google Scholar 

  • Mehler, K., L.E. Burlakova, A.Y. Karatayev, A.K. Elgin, T.F. Nalepa, C.P. Madenjian, and E. Hinchey. 2020. Long-term trends of Lake Michigan benthos with emphasis on the southern basin. Journal of Great Lakes Research 46: 528–537.

    Article  CAS  Google Scholar 

  • Melo de Rosa, D., A.M. de Sene, M.Z. Moreira, and P.S. Pompeu. 2021. Non-native prey species supporting fish assemblage biomass in a Neotropical reservoir. Biological Invasions 23: 2355–2370.

    Article  Google Scholar 

  • Messing, R.H., and M.G. Wright. 2006. Biological control of invasive species: Solution or pollution? Frontiers in Ecology and the Environment 4: 132–140.

    Article  Google Scholar 

  • Molloy, D.P., A.Y. Karatayev, L.E. Burlakova, D.P. Kurandina, and F. Laruelle. 1997. Natural enemies of zebra mussels: Predators, parasites, and ecological competitors. Reviews in Fisheries Science 5: 27–97.

    Article  Google Scholar 

  • Mooney, H.A., and R.J. Hobbs, eds. 2000. Invasive species in a changing world, 1–384. Washington, DC: Island Press.

    Google Scholar 

  • Morens, D.M., J.K. Taubenberger, G.K. Folkers, and A.S. Fauci. 2010. Pandemic influenza’s 500th anniversary. Clinical Infectious Diseases 51: 1442–1444.

    Article  Google Scholar 

  • Muñoz, N.J., B. Reid, C. Correa, B.D. Neff, and J.D. Reynolds. 2021. Non-native Chinook salmon add nutrient subsidies and functional novelty to Patagonian streams. Freshwater Biology 66: 495–508.

    Article  CAS  Google Scholar 

  • Myers, J.D., and J.S. Cory. 2017. Chapter 12. Biological control agents: Invasive species or valuable solutions? In Impact of biological invasions on ecosystem services, ed. M. Vilà and P.E. Hulme, 191–202. Berlin: Springer.

    Chapter  Google Scholar 

  • Nghiem, L.T.P., T. Soliman, D.C.J. Yeo, H.T.W. Tan, T.A. Evans, J.D. Mumford, R.P. Keller, R.H.A. Baker, et al. 2013. Economic and environmental impacts of harmful non-indigenous species in Southeast Asia. PLoS ONE 8: e71255.

    Article  CAS  Google Scholar 

  • Ortega, S., C. Rodríguez, B. Mendoza-Hernández, and H. Drummond. 2021. How removal of cats and rats from an island allowed a native predator to threaten a native bird. Biological Invasions 23: 2749–2761.

    Article  Google Scholar 

  • Ozella, L., M. Cecchetti, and D. Pessani. 2016. Diet of feral cats during the Scopoli’s shearwater breeding season on Linosa Island, Mediterranean Sea. Italian Journal of Zoology 83: 589–599.

    Article  Google Scholar 

  • Pace, M.L., D.L. Strayer, D. Fischer, and H.M. Malcom. 2010. Recovery of native zooplankton associated with increased mortality of an invasive mussel. Ecosphere 1:art3.

  • Packer, J.G., S. Delean, C. Kueffer, J. Prider, K. Abley, J.M. Facelli, and S.M. Carthew. 2016. Native faunal communities depend on habitat from non-native plants in novel but not in natural ecosystems. Biodiversity and Conservation 25: 503–523.

    Article  Google Scholar 

  • Palmas, P., R. Gouyet, M. Oedin, A. Millon, J.-J. Cassan, J. Kowi, E. Bonnaud, and E. Vidal. 2020. Rapid recolonisation of feral cats following intensive culling in a semi-isolated context. NeoBiota 63: 177–200.

    Article  Google Scholar 

  • Paolucci, E.M., and E.V. Thuesen. 2015. Trophic relationships of Limnoperna fortunei with larval fishes. In Limnoperna fortunei: the ecology, distribution and control of a swiftly spreading invasive fouling mussel, ed. D. Boltovskoy, 211–229. Berlin: Springer.

    Google Scholar 

  • Pattermore, D.E., and D.S. Wilcove. 2012. Invasive rats and recent colonist birds partially compensate for the loss of endemic New Zealand pollinators. Proceedings of the Royal Society B: Biological Sciences 279: 1597–1605.

    Article  Google Scholar 

  • Pearce, F. 2015. The new wild. Why invasive species will be nature’s salvation, 1–272. Boston: Beacon Press.

    Google Scholar 

  • Pejchar, L., and H.A. Mooney. 2009. Invasive species, ecosystem services and human well-being. Trends in Ecology & Evolution 24: 497–504.

    Article  Google Scholar 

  • Perrings, C., M. Williamson, and S. Dalmazzone, eds. 2001. The economics of biological invasions, 1–248. Northampton: Edward Elgar.

    Google Scholar 

  • Peterson, D.L., P. Vecsei, and C.A. Jennings. 2007. Ecology and biology of the lake sturgeon: A synthesis of current knowledge of a threatened North American Acipenseridae. Reviews in Fish Biology and Fisheries 17: 59–76.

    Article  Google Scholar 

  • Pienkowski, T., S. Williams, K. McLaren, B. Wilson, and N. Hockley. 2015. Alien invasions and livelihoods: Economic benefits of invasive Australian Red Claw crayfish in Jamaica. Ecological Economics 112: 68–77.

    Article  Google Scholar 

  • Pimentel, D., ed. 2011. Biological invasions. Economic and environmental costs of alien plant, animal, and microbe species (Second edition), 1–449. Boca Raton: CRC Press.

    Google Scholar 

  • Pimentel, D., R. Zuniga, and D. Morrison. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273–288.

    Article  Google Scholar 

  • Pitt, W.C., J.C. Beasley, and G.W. Witmer, eds. 2018. Ecology and management of terrestrial vertebrate invasive species in the United States, 1–403. Boca Raton: Taylor & Francis.

    Google Scholar 

  • Potter, C.W. 2001. A history of influenza. Journal of Applied Microbiology 91: 572–579.

    Article  CAS  Google Scholar 

  • Ram, J., and S.M. Palazzolo. 2008. Globalization of an aquatic pest: Economic costs, ecological outcomes, and positive applications of Zebra Mussel invasions and expansions. Geography Compass 2: 1755–1776.

    Article  Google Scholar 

  • Ramus, A.P., B.R. Silliman, M.S. Thomsen, and Z.T. Long. 2017. An invasive foundation species enhances multifunctionality in a coastal ecosystem. Proceedings of the National Academy of Sciences of the United States of America 114: 8580–8585.

    Article  CAS  Google Scholar 

  • Reaser, J.K., A. Gutierrez, and L. Meyerson. 2003. Biological Invasions: Does the cost outweigh the benefits? BioScience 53: 598–600.

    Article  Google Scholar 

  • Reed-Andersen, T., S.R. Carpenter, D.K. Padilla, and R.C. Lathrop. 2000. Predicted impact of zebra mussel (Dreissena polymorpha) invasion on water clarity in Lake Mendota. Canadian Journal of Fisheries and Aquatic Sciences 57: 1617–1626.

    Article  CAS  Google Scholar 

  • Reise, K., C. Buschbaum, H. Buttger, and M.K. Wegner. 2017. Invading oysters and native mussels: From hostile takeover to compatible bedfellows. Ecosphere 8: e01949.

    Article  Google Scholar 

  • Robley, A., B. Reddiex, T. Arthur, R. Pech, and D. Forsyth. 2004. Interactions between feral cats, foxes, native carnivores, and rabbits in Australia, Arthur Rylah Institute for Environmental Research, Department of Sustainability and Environment, Melbourne, Australia, pp. 1–72.

  • Rodriguez, L.F. 2006. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biological Invasions 8: 927–939.

    Article  Google Scholar 

  • Rudstam, L.G., and C.J. Gandino. 2020. Zebra or quagga mussel dominance depends on trade-offs between growth and defense—Field support from Onondaga Lake, NY. PLoS ONE 15: e0235387.

    Article  CAS  Google Scholar 

  • Sagoff, M. 2005. Do non-native species threaten the natural environment? Journal of Agricultural and Environmental Ethics 18: 215–236.

    Article  Google Scholar 

  • Schlaepfer, M.A. 2018. Do non-native species contribute to biodiversity? PLoS Biology 16: e2005568.

    Article  CAS  Google Scholar 

  • Schlaepfer, M.A., B.P. Guinaudeau, P. Martin, and N. Wyler. 2020. Quantifying the contributions of native and non-native trees to a city’s biodiversity and ecosystem services. Urban Forestry & Urban Greening 56: 126861.

    Article  Google Scholar 

  • Schlaepfer, M.A., D.F. Sax, and J.D. Olden. 2011. The potential conservation value of non-native species. Conservation Biology 25: 428–437.

    Article  Google Scholar 

  • Scossa, F., and A.R. Fernie. 2021. When a crop goes back to the wild: Feralization. Trends in Plant Science 26: 543–545.

    Article  CAS  Google Scholar 

  • Sesin, V., C.M. Davy, K.J. Stevens, R. Hamp, and J.R. Freeland. 2021. Glyphosate toxicity to native nontarget macrophytes following three different routes of incidental exposure. Integrated Environmental Assessment and Management 17: 597–613.

    Article  CAS  Google Scholar 

  • Shackleton, C.M., D. McGarry, S. Fourie, J. Gambiza, S.E. Shackleton, and C. Fabricius. 2007. Assessing the effects of invasive alien species on rural livelihoods: Case examples and a framework from South Africa. Human Ecology 35: 113–127.

    Article  Google Scholar 

  • Shackleton, R.T., D.C. Le Maitre, N.M. Pasiecznik, and D.M. Richardson. 2014. Prosopis: A global assessment of the biogeography, benefits, impacts and management of one of the world’s worst woody invasive plant taxa. AoB PLANTS. https://doi.org/10.1093/aobpla/plu027.

    Article  Google Scholar 

  • Shackleton, R.T., D.M. Richardson, C.M. Shackleton, B. Bennett, S.L. Crowley, K. Dehnen-Schmutz, R.A. Estévez, A. Fischer, et al. 2019a. Explaining people’s perceptions of invasive alien species: A conceptual framework. Journal of Environmental Management 229: 10–26.

    Article  Google Scholar 

  • Shackleton, R.T., C.M. Shackleton, and C.A. Kull. 2019b. The role of invasive alien species in shaping local livelihoods and human well-being: A review. Journal of Environmental Management 229: 145–157.

    Article  Google Scholar 

  • Shcherbina, G.K., and V.V. Bezmaternykh. 2019. Effect of zebra mussel Dreissena polymorpha (Pallas, 1771) (Mollusca, Dreissenidae) and perch Perca fluviatilis (L.) (Pisces, Perciidae) of different age groups on the structure and main characteristics of macrozoobenthos in experimental mesocosms. Inland Water Biology 12: 190–198.

    Article  Google Scholar 

  • Simberloff, D. 2002. Book review: The economics of biological invasions [Edited by C. Perrings, M. Williamson and S. Dalmazzone, Edward Elgar Publisher, Cheltenham, UK, 2000, 249 pp, ISBN 1-84064-378-1 (hardbound), £59.95]. Biodiversity and Conservation 11: 553–556.

    Article  Google Scholar 

  • Simberloff, D. 2020. Maintenance management and eradication of established aquatic invaders. Hydrobiologia 848: 2399–2420.

    Article  Google Scholar 

  • Smircich, M.G., D.L. Strayer, and E.T. Schultz. 2017. Zebra mussel (Dreissena polymorpha) affects the feeding ecology of early stage striped bass (Morone saxatilis) in the Hudson River estuary. Environmental Biology of Fishes 100: 395–406.

    Article  Google Scholar 

  • Sogge, M.K., S.J. Sferra, and E.H. Paxton. 2008. Tamarix as habitat for birds: Implications for riparian restoration in the southwestern United States. Restoration Ecology 16: 146–154.

    Article  Google Scholar 

  • Starešinič, M., B. Boh Podgornik, D. Javoršek, M. Leskovšek, and K. Možina. 2021. Fibers obtained from invasive alien plant species as a base material for paper production. Forests 12: 527.

    Article  Google Scholar 

  • Strayer, D.L., C.M. D’Antonio, F. Essl, M.S. Fowler, J. Geist, S. Hilt, I. Jarić, K. Jöhnk, et al. 2017. Boom-bust dynamics in biological invasions: Towards an improved application of the concept. Ecology Letters 20: 1337–1350.

    Article  Google Scholar 

  • Strayer, D.L., D.T. Fischer, S.K. Hamilton, H.M. Malcom, M.L. Pace, and C.T. Solomon. 2020. Long-term variability and density dependence in Hudson River Dreissena populations. Freshwater Biology 65: 474–489.

    Article  Google Scholar 

  • Strayer, D.L., K.A. Hattala, and A.W. Kahnle. 2004. Effects of an invasive bivalve (Dreissena polymorpha) on fish in the Hudson River estuary. Canadian Journal of Fisheries and Aquatic Sciences 61: 924–941.

    Article  Google Scholar 

  • Strayer, D.L., and H.M. Malcom. 2007. Effects of zebra mussels (Dreissena polymorpha) on native bivalves: The beginning of the end or the end of the beginning? Journal of the North American Benthological Society 26: 111–122.

    Article  Google Scholar 

  • Stromberg, J.C., M.K. Chew, P.L. Nagler, and E.P. Glenn. 2009. Changing perceptions of change: The role of scientists in Tamarix and river management. Restoration Ecology 17: 177–186.

    Article  Google Scholar 

  • Su, W., Q. Sun, M. Xia, Z. Wen, and Z. Yao. 2018. The resource utilization of water hyacinth (Eichhornia crassipes [Mart.] Solms) and its challenges. Resources 7: 46.

    Article  Google Scholar 

  • Sylvester, F., and P. Sardiña. 2015. Relationships of Limnoperna fortunei with benthic animals. In Limnoperna fortunei: the ecology, distribution and control of a swiftly spreading invasive fouling mussel, ed. D. Boltovskoy, 191–210. Berlin: Springer.

    Google Scholar 

  • Tassin, J., and C.A. Kull. 2015. Facing the broader dimensions of biological invasions. Land Use Policy 42: 165–169.

    Article  Google Scholar 

  • Tassin, J., H. Rangan, and C.A. Kull. 2012. Hybrid improved tree fallows: Harnessing invasive woody legumes for agroforestry. Agroforestry Systems 84: 417–428.

    Article  Google Scholar 

  • Thompson, K. 2014. Where do camels belong? Why invasive species aren’t all bad, 1–262. London: Profile Books.

    Google Scholar 

  • Travers, T., M.-A. Lea, R. Alderman, A. Terauds, and J. Shaw. 2021. Bottom-up effect of eradications: The unintended consequences for top-order predators when eradicating invasive prey. Journal of Applied Ecology 58: 801–811.

    Article  Google Scholar 

  • Travis, J. 1993. Invader threatens Black, Azov Seas. Science 262: 1366–1367.

    Article  CAS  Google Scholar 

  • Turbelin, A.J., B.D. Malamud, R.A. Francis, and M. Sykes. 2017. Mapping the global state of invasive alien species: Patterns of invasion and policy responses. Global Ecology and Biogeography 26: 78–92.

    Article  Google Scholar 

  • Turnhout, E., C. Waterton, K. Neves, and M. Buizer. 2013. Rethinking biodiversity: From goods and services to “living with.” Conservation Letters 6: 154–161.

    Article  Google Scholar 

  • Valenti, W.C., H.P. Barros, P. Moraes-Valenti, G.W. Bueno, and R.O. Cavalli. 2021. Aquaculture in Brazil: Past, present and future. Aquaculture Reports 19: 100611.

    Article  Google Scholar 

  • Valentine, L.E., C.E. Ramalho, L. Mata, M.D. Craig, P.L. Kennedy, and R.J. Hobbs. 2020. Novel resources: Opportunities for and risks to species conservation. Frontiers in Ecology and the Environment 18: 558–566.

    Article  Google Scholar 

  • van der Wal, R., A. Fischer, S. Selge, and B. Larson. 2015. Neither the public nor experts judge species primarily on their origins. Environmental Conservation 42: 349–355.

    Article  Google Scholar 

  • vanEngelsdorp, D., and M.D. Meixner. 2010. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology 103: S80–S95.

    Article  Google Scholar 

  • Vaughn, C.C., and T.J. Hoellein. 2018. Bivalve impacts in freshwater and marine ecosystems. Annual Review of Ecology, Evolution, and Systematics 49: 183–208.

    Article  Google Scholar 

  • Verstijnen, Y., E.C.H.E.T. Lucassen, M. van der Gaag, A.J. Wagenvoort, H. Castelijns, H.A.M. Ketelaars, G. van der Velde, and A.J.P. Smolders. 2019. Trophic relationships in Dutch reservoirs recently invaded by Ponto-Caspian species: Insights from fish trends and stable isotope analysis. Aquatic Invasions 14: 280–298.

    Article  Google Scholar 

  • Vigliano, P.H., and M.F. Alonso. 2007. Salmonid introductions in Patagonia: A mixed blessing. In Ecological and genetic implications of aquaculture activities, ed. T.M. Bert, 315–331. Berlin: Springer.

    Chapter  Google Scholar 

  • Vimercati, G., S. Kumschick, A.F. Probert, L. Volery, and S. Bacher. 2020. The importance of assessing positive and beneficial impacts of alien species. NeoBiota 62: 525–545.

    Article  Google Scholar 

  • Vince, G. 2011. Embracing invasives. Science 331: 1383–1384.

    Article  CAS  Google Scholar 

  • Vizentin-Bugoni, J., C.E. Tarwater, J.T. Foster, D.R. Drake, J.M. Gleditsch, A.M. Hruska, J.P. Kelley, and J.H. Sperry. 2019. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai‘i. Science 364: 78–82.

    Article  CAS  Google Scholar 

  • Wagner, V., P.M. Antunes, M. Irvine, and C.R. Nelson. 2017. Herbicide usage for invasive non-native plant management in wildland areas of North America. Journal of Applied Ecology 54: 198–204.

    Article  Google Scholar 

  • Wallach, A.D., M. Bekoff, C. Batavia, M.P. Nelson, and D. Ramp. 2018. Summoning compassion to address the challenges of conservation. Conservation Biology 32: 1255–1265.

    Article  Google Scholar 

  • Wallach, A.D., E. Lundgren, C. Batavia, M.P. Nelson, E. Yanco, W.L. Linklater, S.P. Carroll, D. Celermajer, et al. 2020. When all life counts in conservation. Conservation Biology 34: 997–1007.

    Article  Google Scholar 

  • Walsh, J.R., S.R. Carpenter, and M.J. Vander Zanden. 2016. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proceedings of the National Academy of Sciences of the United States of America 113: 4081–4085.

    Article  CAS  Google Scholar 

  • Wan, F., M. Jiang, and A. Zhang, eds. 2017. Biological invasions and its management in China, 1–366. Dodrecht: Springer.

    Google Scholar 

  • Wang, J., K.R. Koopman, F.P.L. Collas, L. Posthuma, T. de Nijs, R.S.E.W. Leuven, and A.J. Hendriks. 2021. Towards an ecosystem service-based method to quantify the filtration services of mussels under chemical exposure. Science of the Total Environment 763: 144196.

    Article  CAS  Google Scholar 

  • Ward, S., A.M.V. Fournier, and A.L. Bond. 2019. Assessing gaps in reporting non-target mortality in island rodent eradication operations. Biological Invasions 21: 3101–3108.

    Article  Google Scholar 

  • Webster, R.G., W.J. Bean, O.T. Gorman, T.M. Chambers, and Y. Kawaoka. 1992. Evolution and ecology of influenza A viruses. Microbiological Reviews 56: 152–179.

    Article  CAS  Google Scholar 

  • Wilcove, D.S., D. Rothstein, J. Dubow, A. Phillips, and E. Losos. 1998. Quantifying threats to imperiled species in the United States. BioScience 48: 607–615.

    Article  Google Scholar 

  • Wingfield, M.J., B. Slippers, B.P. Hurley, T.A. Coutinho, B.D. Wingfield, and J. Roux. 2008. Eucalypt pests and diseases: Growing threats to plantation productivity. Southern Forests: A Journal of Forest Science 70: 139–144.

    Article  Google Scholar 

  • Xu, H., H. Ding, M. Li, S. Qiang, J. Guo, Z. Han, Z. Huang, H. Sun, et al. 2006. The distribution and economic losses of alien species invasion to China. Biological Invasions 8: 1495–1500.

    Article  Google Scholar 

  • Zavaleta, E.S., R.J. Hobbs, and H.A. Mooney. 2001. Viewing invasive species removal in a whole-ecosystem context. Trends in Ecology & Evolution 16: 454–459.

    Article  Google Scholar 

  • Zhang, P., B. Li, J. Wu, and S. Hu. 2019. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: A meta-analysis. Ecology Letters 22: 200–210.

    Article  Google Scholar 

  • Zwerschke, N., L. Eagling, D. Roberts, and N. O’Connor. 2020. Can an invasive species compensate for the loss of a declining native species? Functional similarity of native and introduced oysters. Marine Environmental Research 153: 104793.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant UNDEFI (Argentina) 273/2020 to NC. The suggestions of two anonymous reviewers, as well as comments by Mark Davis on an earlier version of the manuscript, are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetrio Boltovskoy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boltovskoy, D., Guiaşu, R., Burlakova, L. et al. Misleading estimates of economic impacts of biological invasions: Including the costs but not the benefits. Ambio 51, 1786–1799 (2022). https://doi.org/10.1007/s13280-022-01707-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-022-01707-1

Keywords

Navigation