Skip to main content

Advertisement

Log in

MiRNA-221-3p desensitizes pancreatic cancer cells to 5-fluorouracil by targeting RB1

  • Original Article
  • Published:
Tumor Biology

Abstract

Pancreatic cancer is a highly lethal disease due to its rapid dissemination and resistance to conventional chemotherapy. MicroRNAs (miRNAs) are emerging as novel regulators of chemoresistance, which modulate the expression of drug resistance-related genes. MiRNA-221 has been reported to be associated with chemoresistance in various types of cancer. But the detailed molecular mechanism about miR-221-3p regulating 5-fluorouracil (5-FU) resistance in human pancreatic cancer remains to be clarified. In this study, we investigated the association between miR-221-3p expression and 5-FU sensitivity. Studies on pancreatic cancer cell lines suggested an increased 5-FU resistance with miR-221-3p over-expression. In addition, the results indicated that miR-221-3p down-regulated RB1 expression by directly binding to its 3′-UTR and therefore caused increased several aspects of pancreatic cancer pathogenesis, including proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Collectively, our findings revealed the important role of miR-221-3p in promoting 5-FU resistance of pancreatic cancer cells and provided a potential therapeutic target for pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29. doi:10.3322/caac.21208.

    Article  PubMed  Google Scholar 

  2. Cartwright T, Richards DA, Boehm KA. Cancer of the pancreas: are we making progress? A review of studies in the US Oncology Research Network. Cancer Control. 2008;15(4):308–13.

    PubMed  Google Scholar 

  3. Li W, Ma Q, Liu J, Han L, Ma G, Liu H, et al. Hyperglycemia as a mechanism of pancreatic cancer metastasis. Front Biosci (Landmark Ed). 2012;17:1761–74.

    Article  CAS  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  5. Long J, Zhang Y, Yu X, Yang J, LeBrun DG, Chen C, et al. Overcoming drug resistance in pancreatic cancer. Expert Opin Ther Targets. 2011;15(7):817–28. doi:10.1517/14728222.2011.566216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  7. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8(2):93–103.

    Article  CAS  PubMed  Google Scholar 

  8. Lu H, Buchan RJ, Cook SA. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res. 2010;86(3):410–20. doi:10.1093/cvr/cvq010.

    Article  CAS  PubMed  Google Scholar 

  9. Ma F, Liu X, Li D, Wang P, Li N, Lu L, et al. MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol. 2010;184(11):6053–9. doi:10.4049/jimmunol.0902308.

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol. 2005;7(7):719–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saxena S, Jonsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem. 2003;278(45):44312–9. doi:10.1074/jbc.M307089200.

    Article  CAS  PubMed  Google Scholar 

  12. Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113(6):673–6.

    Article  CAS  PubMed  Google Scholar 

  13. Hummel R, Hussey DJ, Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 2010;46(2):298–311. doi:10.1016/j.ejca.2009.10.027.

    Article  CAS  PubMed  Google Scholar 

  14. Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH. MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer. 2011;47(2):163–74. doi:10.1016/j.ejca.2010.11.005.

    Article  CAS  PubMed  Google Scholar 

  15. Schoof CR, Botelho EL, Izzotti A, Vasques Ldos R. MicroRNAs in cancer treatment and prognosis. Am J Cancer Res. 2012;2(4):414–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene. 2008;27(27):3845–55. doi:10.1038/onc.2008.6.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283(45):31079–86. doi:10.1074/jbc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res. 2009;15(16):5073–81. doi:10.1158/1078-0432.CCR-09-0092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu X, Zhao P, Zhang C, Fu Z, Chen Y, Lu A, et al. Analysis of miR-221 and p27 expression in human gliomas. Mol Med Rep. 2009;2(4):651–6. doi:10.3892/mmr_00000152.

    CAS  PubMed  Google Scholar 

  20. Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, et al. Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol. 2009;34(6):1653–60.

    CAS  PubMed  Google Scholar 

  21. Zhang C, Zhang J, Hao J, Shi Z, Wang Y, Han L, et al. High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. J Transl Med. 2012;10:119. doi:10.1186/1479-5876-10-119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang J, Han L, Ge Y, Zhou X, Zhang A, Zhang C, et al. miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. Int J Oncol. 2010;36(4):913–20.

    CAS  PubMed  Google Scholar 

  23. Papaconstantinou IG, Manta A, Gazouli M, Lyberopoulou A, Lykoudis PM, Polymeneas G, et al. Expression of microRNAs in patients with pancreatic cancer and its prognostic significance. Pancreas. 2013;42(1):67–71. doi:10.1097/MPA.0b013e3182592ba7.

    Article  CAS  PubMed  Google Scholar 

  24. Sabbah M, Emami S, Redeuilh G, Julien S, Prevost G, Zimber A, et al. Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updat. 2008;11(4–5):123–51. doi:10.1016/j.drup.2008.07.001.

    Article  CAS  PubMed  Google Scholar 

  25. Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res. 2008;68(7):2391–9. doi:10.1158/0008-5472.

    Article  CAS  PubMed  Google Scholar 

  26. Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 2006;66(17):8319–26.

    Article  CAS  PubMed  Google Scholar 

  27. Kong D, Li Y, Wang Z, Sarkar FH. Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers (Basel). 2011;3(1):716–29. doi:10.3390/cancers30100716.

    Article  Google Scholar 

  28. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15. doi:10.1016/j.cell.2008.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, et al. Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol. 2011;8(1):27–33. doi:10.1038/nrgastro.2010.188.

    Article  CAS  PubMed  Google Scholar 

  30. Castellanos JA, Merchant NB, Nagathihalli NS. Emerging targets in pancreatic cancer: epithelial-mesenchymal transition and cancer stem cells. Onco Targets Ther. 2013;6:1261–7. doi:10.2147/OTT.

    PubMed  PubMed Central  Google Scholar 

  31. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007;67(5):1979–87 doi:67/5/1979.

    Article  CAS  PubMed  Google Scholar 

  32. Jiang JH, Liu C, Cheng H, Lu Y, Qin Y, YF X, et al. Epithelial-mesenchymal transition in pancreatic cancer: is it a clinically significant factor? Biochim Biophys Acta. 2015;1855(1):43–9. doi:10.1016/j.bbcan.2014.11.004.

    CAS  PubMed  Google Scholar 

  33. Cano A, Nieto MA. Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends Cell Biol. 2008;18(8):357–9. doi:10.1016/j.tcb.2008.05.005.

    Article  CAS  PubMed  Google Scholar 

  34. Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12(12):580–7.

    Article  CAS  PubMed  Google Scholar 

  35. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73. doi:10.1093/nar/gkt1181.

    Article  CAS  PubMed  Google Scholar 

  36. Li JH, Luo N, Zhong MZ, Xiao ZQ, Wang JX, Yao XY, et al. Inhibition of microRNA-196a might reverse cisplatin resistance of A549/DDP non-small-cell lung cancer cell line. Tumour Biol. 2015. doi:10.1007/s13277-015-4017-7.

    Google Scholar 

  37. Liu RL, Dong Y, Deng YZ, Wang WJ, Li WD. Tumor suppressor miR-145 reverses drug resistance by directly targeting DNA damage-related gene RAD18 in colorectal cancer. Tumour Biol. 2015;36(7):5011–9. doi:10.1007/s13277-015-3152-5.

    Article  CAS  PubMed  Google Scholar 

  38. Li Z, Yu X, Shen J, Jiang Y. MicroRNA dysregulation in uveal melanoma: a new player enters the game. Oncotarget. 2015;6(7):4562–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bader AG, Brown D, Winkler M. The promise of microRNA replacement therapy. Cancer Res. 2010;70(18):7027–30. doi:10.1158/0008-5472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pencheva N, Tavazoie SF. Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol. 2013;15(6):546–54. doi:10.1038/ncb2769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sivadas VP, Kannan S. The microRNA networks of TGFbeta signaling in cancer. Tumour Biol. 2014;35(4):2857–69. doi:10.1007/s13277-013-1481-9.

    Article  CAS  PubMed  Google Scholar 

  42. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79. doi:10.1146/annurev.med.59.053006.104707.

    Article  CAS  PubMed  Google Scholar 

  43. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem. 2009;284(6):3728–38. doi:10.1074/jbc.M808788200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kawaguchi T, Komatsu S, Ichikawa D, Morimura R, Tsujiura M, Konishi H, et al. Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. Br J Cancer. 2013;108(2):361–9. doi:10.1038/bjc.2012.546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 2007;26(15):3699–708.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O'Brien C, et al. TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 2011;4(177):ra41. doi:10.1126/scisignal.

    Article  PubMed  Google Scholar 

  47. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005;334(4):1351–8.

    Article  CAS  PubMed  Google Scholar 

  48. Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM. p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev. 2004;18(8):862–76. doi:10.1101/gad.1185504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008;93(5):1600–8. doi:10.1210/jc.2007-2696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pang Y, Young CY, Yuan H. MicroRNAs and prostate cancer. Acta Biochim Biophys Sin Shanghai. 2010;42(6):363–9.

    Article  CAS  PubMed  Google Scholar 

  51. Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008;79(4):581–8. doi:10.1093/cvr/cvn156.

    Article  CAS  PubMed  Google Scholar 

  52. Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E, Dervenoulas J. The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol. 2010;84(1):1–16. doi:10.1111/j.1600-0609.2009.01348.x.

    Article  CAS  PubMed  Google Scholar 

  53. Hwang MS, Yu N, Stinson SY, Yue P, Newman RJ, Allan BB, et al. miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS One. 2013;8(6):e66502. doi:10.1371/journal.pone.0066502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.

    Article  CAS  PubMed  Google Scholar 

  55. Murphree AL, Benedict WF. Retinoblastoma: clues to human oncogenesis. Science. 1984;223(4640):1028–33.

    Article  CAS  PubMed  Google Scholar 

  56. Shao Z, Robbins PD. Differential regulation of E2F and Sp1-mediated transcription by G1 cyclins. Oncogene. 1995;10(2):221–8.

    CAS  PubMed  Google Scholar 

  57. Indovina P, Pentimalli F, Casini N, Vocca I, A. G. .RB1 dual role in proliferation and apoptosis: cell fate control and implications for cancer therapy. Oncotarget. 2015;6(20):17873–90.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Ming tai Chen and Zheng yi Zhang from IBMS of PUMC for technical assistance. This work was supported by grants from the National Natural Science Foundation of China (31371322, to J.Y.; 91440111, to J.Y.; 31571523, to Y.N.M.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanni Ma or Guotao Sun.

Ethics declarations

Conflicts of interest

None

Additional information

Lijun Zhao and Dongling Zou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Zou, D., Wei, X. et al. MiRNA-221-3p desensitizes pancreatic cancer cells to 5-fluorouracil by targeting RB1. Tumor Biol. 37, 16053–16063 (2016). https://doi.org/10.1007/s13277-016-5445-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5445-8

Keywords

Navigation