Skip to main content

Advertisement

Log in

The role of ADAM17 in tumorigenesis and progression of breast cancer

  • Review
  • Published:
Tumor Biology

Abstract

A disintegrin and metalloproteinase (ADAM) family members are known to process the target membrane-bound molecules through the quick induction of their protease activities under interaction with other molecules, which have diverse roles in tissue morphogenesis and pathophysiological remodeling. Among these, ADAM17 is a membrane-bound protease that sheds the extracellular domain of various receptors or its ligands from the cell membrane and subsequently activates downstream signaling transduction pathways. Importantly, breast cancer remains a mainspring of cancer-induced death in women, and numerous regulatory pathways have been implicated in the formation of breast cancer. Substantial evidence has demonstrated that an obvious increased in ADAM17 cell surface expression has been discovered in breast cancer and was shown to be associated with mammary tumorigenesis, invasiveness, and drug resistance. Over the last decades, it has received more than its share of attention that ADAM17 plays a potential role in breast cancer, including cell proliferation, invasion, angiogenesis, apoptosis, and trastuzumab resistance. In our review, we discuss the mechanisms through which ADAM17 acts on breast cancer tumorigenesis and progression. Thus, this will provide further impetus for exploiting ADAM17 as a new target for breast cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Filipova A, Seifrtova M, Mokry J, Dvorak J, Rezacova M, Filip S, et al. Breast cancer and cancer stem cells: a mini-review. Tumori. 2014;100(4):363–9. doi:10.1700/1636.17886.

    CAS  PubMed  Google Scholar 

  2. Diessner J, Bruttel V, Becker K, Pawlik M, Stein R, Hausler S, et al. Targeting breast cancer stem cells with HER2-specific antibodies and natural killer cells. Am J Cancer Res. 2013;3(2):211–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim K, Chie EK, Han W, Noh DY, Oh DY, Im SA, et al. Prognostic factors affecting the outcome of salvage radiotherapy for isolated locoregional recurrence after mastectomy. Am J Clin Oncol. 2010;33(1):23–7. doi:10.1097/COC.0b013e31819e2c02.

    Article  PubMed  Google Scholar 

  4. George BP, Abrahamse H. A review on novel breast cancer therapies: photodynamic therapy and plant derived agent induced cell death mechanisms. Anticancer Agents Med Chem. 2016;16:793–801.

    Article  PubMed  CAS  Google Scholar 

  5. McGowan PM, McKiernan E, Bolster F, Ryan BM, Hill AD, McDermott EW, et al. ADAM-17 predicts adverse outcome in patients with breast cancer. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2008;19(6):1075–81. doi:10.1093/annonc/mdm609.

    Article  CAS  Google Scholar 

  6. McGowan PM, Ryan BM, Hill AD, McDermott E, O’Higgins N, Duffy MJ. ADAM-17 expression in breast cancer correlates with variables of tumor progression. Clin Cancer Res: An Off J Am Assoc Cancer Res. 2007;13(8):2335–43. doi:10.1158/1078-0432.CCR-06-2092.

    Article  CAS  Google Scholar 

  7. Sternlicht MD, Sunnarborg SW. The ADAM17-amphiregulin-EGFR axis in mammary development and cancer. J Mammary Gland Biol Neoplasia. 2008;13(2):181–94. doi:10.1007/s10911-008-9084-6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zheng X, Jiang F, Katakowski M, Zhang ZG, Lu QE, Chopp M. ADAM17 promotes breast cancer cell malignant phenotype through EGFR-PI3K-AKT activation. Cancer Biol Ther. 2009;8(11):1045–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duffy MJ, Mullooly M, O’Donovan N, Sukor S, Crown J, Pierce A, et al. The ADAMs family of proteases: new biomarkers and therapeutic targets for cancer? Clin Proteomics. 2011;8(1):9. doi:10.1186/1559-0275-8-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bass R, Edwards DR. ADAMs and protein disulfide isomerase: the key to regulated cell-surface protein ectodomain shedding? Biochem J. 2010;428(3):e3–5. doi:10.1042/BJ20100568.

    Article  CAS  PubMed  Google Scholar 

  11. Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W, Carter HL, et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 1997;385(6618):733–6. doi:10.1038/385733a0.

    Article  CAS  PubMed  Google Scholar 

  12. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997;385(6618):729–33. doi:10.1038/385729a0.

    Article  CAS  PubMed  Google Scholar 

  13. Scheller J, Chalaris A, Garbers C, Rose-John S. ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol. 2011;32(8):380–7. doi:10.1016/j.it.2011.05.005.

    Article  CAS  PubMed  Google Scholar 

  14. Arribas J, Esselens C. ADAM17 as a therapeutic target in multiple diseases. Curr Pharm Des. 2009;15(20):2319–35.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou BB, Peyton M, He B, Liu C, Girard L, Caudler E, et al. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell. 2006;10(1):39–50. doi:10.1016/j.ccr.2006.05.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol. 2004;164(5):769–79. doi:10.1083/jcb.200307137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blobel CP. ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol. 2005;6(1):32–43. doi:10.1038/nrm1548.

    Article  CAS  PubMed  Google Scholar 

  18. Maretzky T, Evers A, Zhou W, Swendeman SL, Wong PM, Rafii S, et al. Migration of growth factor-stimulated epithelial and endothelial cells depends on EGFR transactivation by ADAM17. Nat Commun. 2011;2:229. doi:10.1038/ncomms1232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cai M, Wang Z, Zhang J, Zhou H, Jin L, Bai R, et al. Adam17, a target of Mir-326, promotes Emt-induced cells invasion in lung adenocarcinoma. Cell Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol. 2015;36(3):1175–85. doi:10.1159/000430288.

    Article  CAS  Google Scholar 

  20. Yamamoto K, Trad A, Baumgart A, Huske L, Lorenzen I, Chalaris A, et al. A novel bispecific single-chain antibody for ADAM17 and CD3 induces T-cell-mediated lysis of prostate cancer cells. Biochem J. 2012;445(1):135–44. doi:10.1042/BJ20120433.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng X, Jiang F, Katakowski M, Lu Y, Chopp M. ADAM17 promotes glioma cell malignant phenotype. Mol Carcinog. 2012;51(2):150–64. doi:10.1002/mc.20772.

    Article  CAS  PubMed  Google Scholar 

  22. Xu Q, Ying M, Chen G, Lin A, Xie Y, Ohara N, et al. ADAM17 is associated with EMMPRIN and predicts poor prognosis in patients with uterine cervical carcinoma. Tumour Biol: J Int Soc Oncodevelopmental Biol Med. 2014;35(8):7575–86. doi:10.1007/s13277-014-1990-1.

    Article  CAS  Google Scholar 

  23. Richards FM, Tape CJ, Jodrell DI, Murphy G. Anti-tumour effects of a specific anti-ADAM17 antibody in an ovarian cancer model in vivo. PLoS One. 2012;7(7):e40597. doi:10.1371/journal.pone.0040597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blanchot-Jossic F, Jarry A, Masson D, Bach-Ngohou K, Paineau J, Denis MG, et al. Up-regulated expression of ADAM17 in human colon carcinoma: co-expression with EGFR in neoplastic and endothelial cells. J Pathol. 2005;207(2):156–63. doi:10.1002/path.1814.

    Article  CAS  PubMed  Google Scholar 

  25. Ringel J, Jesnowski R, Moniaux N, Luttges J, Ringel J, Choudhury A, et al. Aberrant expression of a disintegrin and metalloproteinase 17/tumor necrosis factor-alpha converting enzyme increases the malignant potential in human pancreatic ductal adenocarcinoma. Cancer Res. 2006;66(18):9045–53. doi:10.1158/0008-5472.CAN-05-3287.

    Article  CAS  PubMed  Google Scholar 

  26. Wu J, Yin L, Jiang N, Guo WJ, Gu JJ, Chen M, et al. MiR-145, a microRNA targeting ADAM17, inhibits the invasion and migration of nasopharyngeal carcinoma cells. Exp Cell Res. 2015;338(2):232–8. doi:10.1016/j.yexcr.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  27. Aydin D, Bilici A, Yavuzer D, Kefeli U, Tan A, Ercelep O, et al. Prognostic significance of ADAM17 expression in patients with gastric cancer who underwent curative gastrectomy. Clin Transl Oncol: Off Publ Fed Span Oncol Soc Nal Cancer Inst Mex. 2015;17(8):604–11. doi:10.1007/s12094-015-1283-1.

    Article  CAS  Google Scholar 

  28. Fabre-Lafay S, Garrido-Urbani S, Reymond N, Goncalves A, Dubreuil P, Lopez M. Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM-17. J Biol Chem. 2005;280(20):19543–50. doi:10.1074/jbc.M410943200.

    Article  CAS  PubMed  Google Scholar 

  29. Aupperlee MD, Leipprandt JR, Bennett JM, Schwartz RC, Haslam SZ. Amphiregulin mediates progesterone-induced mammary ductal development during puberty. Breast Cancer Res: BCR. 2013;15(3):R44. doi:10.1186/bcr3431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Davies KJ. The complex interaction of matrix metalloproteinases in the migration of cancer cells through breast tissue stroma. International Journal of Breast Cancer. 2014;2014:839094. doi:10.1155/2014/839094.

    PubMed  PubMed Central  Google Scholar 

  31. Sternlicht MD, Sunnarborg SW, Kouros-Mehr H, Yu Y, Lee DC, Werb Z. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development. 2005;132(17):3923–33. doi:10.1242/dev.01966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Glunde K, Stasinopoulos I. ADAM17: the new face of breast cancer-promoting metalloprotease activity. Cancer Biol Ther. 2009;8(11):1055–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kenny PA. TACE: a new target in epidermal growth factor receptor dependent tumors. Differ: Res Biol Divers. 2007;75(9):800–8. doi:10.1111/j.1432-0436.2007.00198.x.

    Article  CAS  Google Scholar 

  34. Kenny PA. Three-dimensional extracellular matrix culture models of EGFR signalling and drug response. Biochem Soc Trans. 2007;35(Pt 4):665–8. doi:10.1042/BST0350665.

    Article  CAS  PubMed  Google Scholar 

  35. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999;13(22):2905–27.

    Article  CAS  PubMed  Google Scholar 

  36. Lal A, Glazer CA, Martinson HM, Friedman HS, Archer GE, Sampson JH, et al. Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res. 2002;62(12):3335–9.

    CAS  PubMed  Google Scholar 

  37. Kenny PA, Bissell MJ. Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Invest. 2007;117(2):337–45. doi:10.1172/JCI29518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Al-Salihi MA, Ulmer SC, Doan T, Nelson CD, Crotty T, Prescott SM, et al. Cyclooxygenase-2 transactivates the epidermal growth factor receptor through specific E-prostanoid receptors and tumor necrosis factor-alpha converting enzyme. Cell Signal. 2007;19(9):1956–63. doi:10.1016/j.cellsig.2007.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oshima H, Popivanova BK, Oguma K, Kong D, Ishikawa TO, Oshima M. Activation of epidermal growth factor receptor signaling by the prostaglandin E(2) receptor EP4 pathway during gastric tumorigenesis. Cancer Sci. 2011;102(4):713–9. doi:10.1111/j.1349-7006.2011.01847.x.

    Article  CAS  PubMed  Google Scholar 

  40. Dannenberg AJ, Subbaramaiah K. Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell. 2003;4(6):431–6.

    Article  CAS  PubMed  Google Scholar 

  41. Normanno N, Bianco C, De Luca A, Maiello MR, Salomon DS. Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr-Relat Cancer. 2003;10(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  42. Borrell-Pages M, Rojo F, Albanell J, Baselga J, Arribas J. TACE is required for the activation of the EGFR by TGF-alpha in tumors. EMBO J. 2003;22(5):1114–24. doi:10.1093/emboj/cdg111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Howlader N, Ries LA, Mariotto AB, Reichman ME, Ruhl J, Cronin KA. Improved estimates of cancer-specific survival rates from population-based data. J Natl Cancer Inst. 2010;102(20):1584–98. doi:10.1093/jnci/djq366.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jendraschak E, Sage EH. Regulation of angiogenesis by SPARC and angiostatin: implications for tumor cell biology. Semin Cancer Biol. 1996;7(3):139–46.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang BH, Liu LZ. PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta. 2008;1784(1):150–8. doi:10.1016/j.bbapap.2007.09.008.

    Article  CAS  PubMed  Google Scholar 

  46. Romano M, De Francesco F, Gringeri E, Giordano A, Ferraro GA, Di Domenico M, et al. Tumor microenvironment versus cancer stem cells in cholangiocarcinoma: synergistic effects? J Cell Physiol. 2015. doi:10.1002/jcp.25190.

    Google Scholar 

  47. Whipple CA, Young AL, Korc M. A KrasG12D-driven genetic mouse model of pancreatic cancer requires glypican-1 for efficient proliferation and angiogenesis. Oncogene. 2012;31(20):2535–44. doi:10.1038/onc.2011.430.

    Article  CAS  PubMed  Google Scholar 

  48. Rego SL, Helms RS, Dreau D. Breast tumor cell TACE-shed MCSF promotes pro-angiogenic macrophages through NF-kappaB signaling. Angiogenesis. 2014;17(3):573–85. doi:10.1007/s10456-013-9405-2.

    Article  CAS  PubMed  Google Scholar 

  49. Low-Marchelli JM, Ardi VC, Vizcarra EA, van Rooijen N, Quigley JP, Yang J. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res. 2013;73(2):662–71. doi:10.1158/0008-5472.CAN-12-0653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Curry JM, Eubank TD, Roberts RD, Wang Y, Pore N, Maity A, et al. M-CSF signals through the MAPK/ERK pathway via Sp1 to induce VEGF production and induces angiogenesis in vivo. PLoS One. 2008;3(10):e3405. doi:10.1371/journal.pone.0003405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Pollard JW. Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol. 2008;84(3):623–30. doi:10.1189/jlb.1107762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Biswas SK, Lewis CE. NF-kappaB as a central regulator of macrophage function in tumors. J Leukoc Biol. 2010;88(5):877–84. doi:10.1189/jlb.0310153.

    Article  CAS  PubMed  Google Scholar 

  53. Hagemann T, Biswas SK, Lawrence T, Sica A, Lewis CE. Regulation of macrophage function in tumors: the multifaceted role of NF-kappaB. Blood. 2009;113(14):3139–46. doi:10.1182/blood-2008-12-172825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buchanan FG, Chang W, Sheng H, Shao J, Morrow JD, DuBois RN. Up-regulation of the enzymes involved in prostacyclin synthesis via Ras induces vascular endothelial growth factor. Gastroenterology. 2004;127(5):1391–400.

    Article  CAS  PubMed  Google Scholar 

  55. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006;66(23):11238–46. doi:10.1158/0008-5472.CAN-06-1278.

    Article  CAS  PubMed  Google Scholar 

  56. McDougall SR, Anderson AR, Chaplain MA. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol. 2006;241(3):564–89. doi:10.1016/j.jtbi.2005.12.022.

    Article  PubMed  Google Scholar 

  57. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475(7355):222–5. doi:10.1038/nature10138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Munoz-Najar UM, Neurath KM, Vumbaca F, Claffey KP. Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene. 2006;25(16):2379–92. doi:10.1038/sj.onc.1209273.

    Article  CAS  PubMed  Google Scholar 

  59. Zheng X, Jiang F, Katakowski M, Kalkanis SN, Hong X, Zhang X, et al. Inhibition of ADAM17 reduces hypoxia-induced brain tumor cell invasiveness. Cancer Sci. 2007;98(5):674–84. doi:10.1111/j.1349-7006.2007.00440.x.

    Article  CAS  PubMed  Google Scholar 

  60. Yang J, Kim WJ, Jun HO, Lee EJ, Lee KW, Jeong JY, et al. Hypoxia-induced fibroblast growth factor 11 stimulates capillary-like endothelial tube formation. Oncol Rep. 2015;34(5):2745–51. doi:10.3892/or.2015.4223.

    CAS  PubMed  Google Scholar 

  61. Li H, Chen J, Zen W, Xu X, Xu Y, Chen Q, et al. Effect of hypoxia inducible factor-1 antisense oligonucleotide on liver cancer. Int J Clin Exp Med. 2015;8(8):12650–5.

    PubMed  PubMed Central  Google Scholar 

  62. Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist. 2004;9(Suppl 5):10–7. doi:10.1634/theoncologist.9-90005-10.

    Article  CAS  PubMed  Google Scholar 

  63. Xia C, Meng Q, Cao Z, Shi X, Jiang BH. Regulation of angiogenesis and tumor growth by p110 alpha and AKT1 via VEGF expression. J Cell Physiol. 2006;209(1):56–66. doi:10.1002/jcp.20707.

    Article  CAS  PubMed  Google Scholar 

  64. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-Oncology. 2005;7(2):134–53. doi:10.1215/S1152851704001115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiang BH, Liu LZ. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res. 2009;102:19–65. doi:10.1016/S0065-230X(09)02002-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang XJ, Feng CW, Li M. ADAM17 mediates hypoxia-induced drug resistance in hepatocellular carcinoma cells through activation of EGFR/PI3K/Akt pathway. Mol Cell Biochem. 2013;380(1–2):57–66. doi:10.1007/s11010-013-1657-z.

    Article  CAS  PubMed  Google Scholar 

  67. Hu L, Hofmann J, Jaffe RB. Phosphatidylinositol 3-kinase mediates angiogenesis and vascular permeability associated with ovarian carcinoma. Clin Cancer Res: An Off J Am Assoc Cancer Res. 2005;11(22):8208–12. doi:10.1158/1078-0432.CCR-05-0206.

    Article  CAS  Google Scholar 

  68. Skinner HD, Zheng JZ, Fang J, Agani F, Jiang BH. Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1alpha, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J Biol Chem. 2004;279(44):45643–51. doi:10.1074/jbc.M404097200.

    Article  CAS  PubMed  Google Scholar 

  69. Sunnarborg SW, Hinkle CL, Stevenson M, Russell WE, Raska CS, Peschon JJ, et al. Tumor necrosis factor-alpha converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J Biol Chem. 2002;277(15):12838–45. doi:10.1074/jbc.M112050200.

    Article  CAS  PubMed  Google Scholar 

  70. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, et al. An essential role for ectodomain shedding in mammalian development. Science. 1998;282(5392):1281–4.

    Article  CAS  PubMed  Google Scholar 

  71. Tovey SM, Witton CJ, Bartlett JM, Stanton PD, Reeves JR, Cooke TG. Outcome and human epidermal growth factor receptor (HER) 1-4 status in invasive breast carcinomas with proliferation indices evaluated by bromodeoxyuridine labelling. Breast Cancer Res: BCR. 2004;6(3):R246–51. doi:10.1186/bcr783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Naresh A, Long W, Vidal GA, Wimley WC, Marrero L, Sartor CI, et al. The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells. Cancer Res. 2006;66(12):6412–20. doi:10.1158/0008-5472.CAN-05-2368.

    Article  CAS  PubMed  Google Scholar 

  73. Vidal GA, Naresh A, Marrero L, Jones FE. Presenilin-dependent gamma-secretase processing regulates multiple ERBB4/HER4 activities. J Biol Chem. 2005;280(20):19777–83. doi:10.1074/jbc.M412457200.

    Article  CAS  PubMed  Google Scholar 

  74. Maatta JA, Sundvall M, Junttila TT, Peri L, Laine VJ, Isola J, et al. Proteolytic cleavage and phosphorylation of a tumor-associated ErbB4 isoform promote ligand-independent survival and cancer cell growth. Mol Biol Cell. 2006;17(1):67–79. doi:10.1091/mbc.E05-05-0402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sartor CI, Zhou H, Kozlowska E, Guttridge K, Kawata E, Caskey L, et al. Her4 mediates ligand-dependent antiproliferative and differentiation responses in human breast cancer cells. Mol Cell Biol. 2001;21(13):4265–75. doi:10.1128/MCB.21.13.4265-4275.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Witton CJ, Reeves JR, Going JJ, Cooke TG, Bartlett JM. Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol. 2003;200(3):290–7. doi:10.1002/path.1370.

    Article  CAS  PubMed  Google Scholar 

  77. Kew TY, Bell JA, Pinder SE, Denley H, Srinivasan R, Gullick WJ, et al. c-erbB-4 protein expression in human breast cancer. Br J Cancer. 2000;82(6):1163–70. doi:10.1054/bjoc.1999.1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cheng QC, Tikhomirov O, Zhou W, Carpenter G. Ectodomain cleavage of ErbB-4: characterization of the cleavage site and m80 fragment. J Biol Chem. 2003;278(40):38421–7. doi:10.1074/jbc.M302111200.

    Article  CAS  PubMed  Google Scholar 

  79. Ni CY, Yuan H, Carpenter G. Role of the ErbB-4 carboxyl terminus in gamma-secretase cleavage. J Biol Chem. 2003;278(7):4561–5. doi:10.1074/jbc.M210504200.

    Article  CAS  PubMed  Google Scholar 

  80. Kirkegaard T, Naresh A, Sabine VS, Tovey SM, Edwards J, Dunne B, et al. Expression of tumor necrosis factor alpha converting enzyme in endocrine cancers. Am J Clin Pathol. 2008;129(5):735–43. doi:10.1309/N6YB6YDVF58YCNHN.

    Article  PubMed  Google Scholar 

  81. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  82. Singh JC, Jhaveri K, Esteva FJ. HER2-positive advanced breast cancer: optimizing patient outcomes and opportunities for drug development. Br J Cancer. 2014;111(10):1888–98. doi:10.1038/bjc.2014.388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Duffy MJ, Crown J, Mullooly M. ADAM10 and ADAM17: new players in trastuzumab resistance. Oncotarget. 2014;5(22):10963–4.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney Jr DW, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421(6924):756–60. doi:10.1038/nature01392.

  85. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, et al. Phase II study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer. Semin Oncol. 1999;26(4 Suppl 12):78–83.

    CAS  PubMed  Google Scholar 

  86. Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD, Friedman LS, et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell. 2009;15(5):429–40. doi:10.1016/j.ccr.2009.03.020.

    Article  CAS  PubMed  Google Scholar 

  87. Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K, et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene. 2009;28(6):803–14. doi:10.1038/onc.2008.432.

    Article  CAS  PubMed  Google Scholar 

  88. Gijsen M, King P, Perera T, Parker PJ, Harris AL, Larijani B, et al. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer. PLoS Biol. 2010;8(12):e1000563. doi:10.1371/journal.pbio.1000563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang SE, Xiang B, Guix M, Olivares MG, Parker J, Chung CH, et al. Transforming growth factor beta engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol Cell Biol. 2008;28(18):5605–20. doi:10.1128/MCB.00787-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7(7):505–16. doi:10.1038/nrm1962.

    Article  CAS  PubMed  Google Scholar 

  91. Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16(7):1647–55. doi:10.1093/emboj/16.7.1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fridman JS, Caulder E, Hansbury M, Liu X, Yang G, Wang Q, et al. Selective inhibition of ADAM metalloproteases as a novel approach for modulating ErbB pathways in cancer. Clin Cancer Res: An Off J American Assoc Cancer Res. 2007;13(6):1892–902. doi:10.1158/1078-0432.CCR-06-2116.

    Article  CAS  Google Scholar 

  93. Lendeckel U, Kohl J, Arndt M, Carl-McGrath S, Donat H, Rocken C. Increased expression of ADAM family members in human breast cancer and breast cancer cell lines. J Cancer Res Clin Oncol. 2005;131(1):41–8. doi:10.1007/s00432-004-0619-y.

    Article  CAS  PubMed  Google Scholar 

  94. Narita D, Seclaman E, Ursoniu S, Anghel A. Increased expression of ADAM12 and ADAM17 genes in laser-capture microdissected breast cancers and correlations with clinical and pathological characteristics. Acta Histochem. 2012;114(2):131–9. doi:10.1016/j.acthis.2011.03.009.

    Article  CAS  PubMed  Google Scholar 

  95. McGowan PM, Mullooly M, Caiazza F, Sukor S, Madden SF, Maguire AA, et al. ADAM-17: a novel therapeutic target for triple negative breast cancer. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2013;24(2):362–9. doi:10.1093/annonc/mds279.

    Article  CAS  Google Scholar 

  96. Wang Y, Mo X, Piper MG, Wang H, Parinandi NL, Guttridge D, et al. M-CSF induces monocyte survival by activating NF-kappaB p65 phosphorylation at Ser276 via protein kinase C. PLoS One. 2011;6(12):e28081. doi:10.1371/journal.pone.0028081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lin EY, Pollard JW. Macrophages: modulators of breast cancer progression. Novartis Found Symp. 2004;256:158–68 .discussion 68-72, 259-69

    Article  CAS  PubMed  Google Scholar 

  98. Kelly PM, Davison RS, Bliss E, McGee JO. Macrophages in human breast disease: a quantitative immunohistochemical study. Br J Cancer. 1988;57(2):174–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kawahara R, Lima RN, Domingues RR, Pauletti BA, Meirelles GV, Assis M, et al. Deciphering the role of the ADAM17-dependent secretome in cell signaling. J Proteome Res. 2014;13(4):2080–93. doi:10.1021/pr401224u.

    Article  CAS  PubMed  Google Scholar 

  100. Blaydon DC, Biancheri P, Di WL, Plagnol V, Cabral RM, Brooke MA, et al. Inflammatory skin and bowel disease linked to ADAM17 deletion. N Engl J Med. 2011;365(16):1502–8. doi:10.1056/NEJMoa1100721.

    Article  CAS  PubMed  Google Scholar 

  101. Chalaris A, Adam N, Sina C, Rosenstiel P, Lehmann-Koch J, Schirmacher P, et al. Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. J Exp Med. 2010;207(8):1617–24. doi:10.1084/jem.20092366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wada H, Saito K, Kanda T, Kobayashi I, Fujii H, Fujigaki S, et al. Tumor necrosis factor-alpha (TNF-alpha) plays a protective role in acute viral myocarditis in mice: a study using mice lacking TNF-alpha. Circulation. 2001;103(5):743–9.

    Article  CAS  PubMed  Google Scholar 

  103. Saftig P, Reiss K. The “a disintegrin and metalloproteases” ADAM10 and ADAM17: novel drug targets with therapeutic potential? Eur J Cell Biol. 2011;90(6–7):527–35. doi:10.1016/j.ejcb.2010.11.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Liangpeng Li, M.D., for his discussion and help in revision. This study was funded by the National Natural Science Foundation of China (grant no. 81272470).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Zhao or Jinhai Tang.

Ethics declarations

Conflict of interest

None

Additional information

Hongyu Shen and Liangpeng Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Li, L., Zhou, S. et al. The role of ADAM17 in tumorigenesis and progression of breast cancer. Tumor Biol. 37, 15359–15370 (2016). https://doi.org/10.1007/s13277-016-5418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5418-y

Keywords

Navigation