Skip to main content
Log in

In vitro evaluation of antitumoral efficacy of catalase in combination with traditional chemotherapeutic drugs against human lung adenocarcinoma cells

  • Original Article
  • Published:
Tumor Biology

Abstract

Lung cancer is the most lethal cancer-related disease worldwide. Since survival rates remain poor, there is an urgent need for more effective therapies that could increase the overall survival of lung cancer patients. Lung tumors exhibit increased levels of oxidative markers with altered levels of antioxidant defenses, and previous studies demonstrated that the overexpression of the antioxidant enzyme catalase (CAT) might control tumor proliferation and aggressiveness. Herein, we evaluated the effect of CAT treatment on the sensitivity of A549 human lung adenocarcinoma cells toward various anticancer treatments, aiming to establish the best drug combination for further therapeutic management of this disease. Exponentially growing A549 cells were treated with CAT alone or in combination with chemotherapeutic drugs (cisplatin, 5-fluorouracil, paclitaxel, daunorubicin, and hydroxyurea). CalcuSyn® software was used to assess CAT/drug interactions (synergism or antagonism). Growth inhibition, NFκB activation status, and redox parameters were also evaluated in CAT-treated A549 cells. CAT treatment caused a cytostatic effect, decreased NFκB activation, and modulated the redox parameters evaluated. CAT treatment exhibited a synergistic effect among most of the anticancer drugs tested, which is significantly correlated with an increased H2O2 production. Moreover, CAT combination caused an antagonism in paclitaxel anticancer effect. These data suggest that combining CAT (or CAT analogs) with traditional chemotherapeutic drugs, especially cisplatin, is a promising therapeutic strategy for the treatment of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29. doi:10.3322/caac.21208.

    Article  PubMed  Google Scholar 

  2. Mountzios G, Dimopoulos MA, Soria JC, Sanoudou D, Papadimitriou CA. Histopathologic and genetic alterations as predictors of response to treatment and survival in lung cancer: a review of published data. Crit Rev Oncol Hematol. 2010;75(2):94–109. doi:10.1016/j.critrevonc.2009.10.002.

    Article  PubMed  Google Scholar 

  3. Ko JH, Gu W, Lim I, Bang H, Ko EA, Zhou T. Ion channel gene expression in lung adenocarcinoma: potential role in prognosis and diagnosis. PLoS One. 2014;9(1):e86569. doi:10.1371/journal.pone.0086569.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Subramanian J, Govindan R. Lung cancer in never smokers: a review. J Clin Oncol. 2007;25:561–70. doi:10.1200/JCO.2006.06.8015.

    Article  PubMed  Google Scholar 

  5. Ramalingam S, Belani C. Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist. 2008;13(1):5–13. doi:10.1634/theoncologist.13-S1-5.

    Article  CAS  PubMed  Google Scholar 

  6. Torigoe T, Izumi H, Ishiguchi H, Yoshida Y, Tanabe M, Yoshida T, et al. Cisplatin resistance and transcription factors. Curr Med Chem Anticancer Agents. 2005;5(1):15–27. doi:10.2174/1568011053352587.

    Article  CAS  PubMed  Google Scholar 

  7. Chang A. Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer. 2011;71:3–10. doi:10.1016/j.lungcan.2010.08.022.

    Article  PubMed  Google Scholar 

  8. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265–79. doi:10.1038/sj.onc.1206933.

    Article  CAS  PubMed  Google Scholar 

  9. DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003;22(2):151–85. doi:10.1016/S0167-6296(02)00126-1.

    Article  PubMed  Google Scholar 

  10. Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol. 2006;533(1–3):222–39. doi:10.1016/j.ejphar.2005.12.087.

    Article  CAS  PubMed  Google Scholar 

  11. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1–40. doi:10.1016/j.cbi.2005.12.009.

    Article  CAS  PubMed  Google Scholar 

  12. Visconti R, Grieco D. New insights on oxidative stress in cancer. Curr Opin Drug Discov Dev. 2009;12(2):240–5.

    CAS  Google Scholar 

  13. Polytarchou C, Hatziapostolou M, Papadimitriou E. Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene. J Biol Chem. 2005;280(49):40428–35. doi:10.1074/jbc.M505120200.

    Article  CAS  PubMed  Google Scholar 

  14. da Motta LL et al. Imbalance in redox status is associated with tumor aggressiveness and poor outcome in lung adenocarcinoma patients. J Cancer Res Clin Oncol. 2014;140(3):461–70. doi:10.1007/s00432-014-1586-6.

    Article  Google Scholar 

  15. Nishikawa M, Hashida M, Takakura Y. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv Drug Deliv Rev. 2009;61(4):319–26.

    Article  CAS  PubMed  Google Scholar 

  16. Goh J, Enns L, Fatemie S, Hopkins H, Morton J, Pettan-Brewer C, et al. Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer. 2011;11:191. doi:10.1186/1471-2407-11-191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1(3):1112–6. doi:10.1038/nprot.2006.179.

    Article  CAS  PubMed  Google Scholar 

  18. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  PubMed  Google Scholar 

  20. Dresch MT, Rossato SB, Kappel VD, Biegelmeyer R, Hoff ML, Mayorga P, et al. Optimization and validation of an alternative method to evaluate total reactive antioxidant potential. Anal Biochem. 2009;385(1):107–14. doi:10.1016/j.ab.2008.10.036.

    Article  CAS  PubMed  Google Scholar 

  21. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  22. Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2007;1(6):3159–65. doi:10.1038/nprot.2006.378.

    Article  Google Scholar 

  23. Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem. 1997;253(2):162–8. doi:10.1006/abio.1997.2391.

    Article  CAS  PubMed  Google Scholar 

  24. Mohanty J, Jaffe JS, Schulman ES, Raible DG. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Methods. 1997;202(2):133–41. doi:10.1016/S0022-1759(96)00244-X.

    Article  CAS  PubMed  Google Scholar 

  25. Chou T-C. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res. 2010;70(2):440–6. doi:10.1158/0008-5472.CAN-09-1947.

    Article  CAS  PubMed  Google Scholar 

  26. Chou T-C, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.

    Article  CAS  PubMed  Google Scholar 

  27. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94. doi:10.4065/83.5.584.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fisher AB. Redox signaling across cell membranes. Antioxid Redox Signal. 2009;11(6):1349–56. doi:10.1089/ARS.2008.2378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ibañez IL, Policastro LL, Tropper I, Bracalente C, Palmieri MA, Rojas PA, et al. H2O2 scavenging inhibits G1/S transition by increasing nuclear levels of p27KIP1. Cancer Lett. 2011;305(1):58–68. doi:10.1016/j.canlet.2011.02.026.

    Article  PubMed  Google Scholar 

  30. Laurent A, Nicco C, Chéreau C, Goulvestre C, Alexandre J, Alves A, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 2005;65(3):948–56.

    CAS  PubMed  Google Scholar 

  31. Policastro L, Molinari B, Larcher F, Blanco P, Podhajcer OL, Costa CS, et al. Imbalance of antioxidant enzymes in tumor cells and inhibition of proliferation and malignant features by scavenging hydrogen peroxide. Mol Carcinog. 2004;39(2):103–13. doi:10.1002/mc.20001.

    Article  CAS  PubMed  Google Scholar 

  32. Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, et al. NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J. 2003;22(15):3898–909. doi:10.1093/emboj/cdg379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakanishi C, Toi M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer. 2005;5(4):297–309. doi:10.1038/nrc1588.

    Article  CAS  PubMed  Google Scholar 

  34. Bowie A, O’Neill LA. Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol. 2000;59(1):13–23. doi:10.1016/S0006-2952(99)00296-8.

    Article  CAS  PubMed  Google Scholar 

  35. Zanotto-Filho A, Delgado-Canedo A, Schroder R, Becker M, Klamt F, Moreira JC. The pharmacological NFkappaB inhibitors BAY117082 and MG132 induce cell arrest and apoptosis in leukemia cells through ROS-mitochondria pathway activation. Cancer Lett. 2010;288(2):192–203. doi:10.1016/j.canlet.2009.06.038.

    Article  CAS  PubMed  Google Scholar 

  36. Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007;8(1):49–62. doi:10.1038/nrm2083.

    Article  CAS  PubMed  Google Scholar 

  37. Zanotto-Filho A, Gelain DP, Schroder R, Souza LF, Pasquali MA, Klamt F, et al. The NF kappa B-mediated control of RS and JNK signaling in vitamin A-treated cells: duration of JNK-AP-1 pathway activation may determined cell death or proliferation. Biochem Pharmacol. 2009;77(7):1291–301. doi:10.1016/j.bcp.2008.12.010.

    Article  CAS  PubMed  Google Scholar 

  38. Baud V, Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 2009;8(1):33–40. doi:10.1038/nrd2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991;10(8):2247–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Godwin P, Baird AM, Heavey S, Barr M, O’Byrne K, Gately K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol. 2013;3:120. doi:10.3389/fonc.2013.00120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoo DG, Song YJ, Cho EJ, Lee SK, Park JB, Yu JH, et al. Alteration of APE1/ref-1 expression in non-small cell lung cancer: the implications of impaired extracellular superoxide dismutase and catalase antioxidant systems. Lung Cancer. 2008;60(2):277–84. doi:10.1016/j.lungcan.2007.10.015.

    Article  PubMed  Google Scholar 

  42. Wang D, Xiang DB, Yang X, Chen LS, Li MX, Zhong ZY, et al. APE1 overexpression is associated with cisplatin resistance in non-small cell lung cancer and targeted inhibition of APE1 enhances the activity of cisplatin in A549 cells. Lung Cancer. 2009;66(3):298–304. doi:10.1016/j.lungcan.2009.02.019.

    Article  PubMed  Google Scholar 

  43. Scandalios JG. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res. 2005;38(7):995–1014. doi:10.1590/S0100-879X2005000700003.

    Article  CAS  PubMed  Google Scholar 

  44. Ma SF, Nishikawa M, Hyoudou K, Takahashi R, Ikemura M, Kobayashi Y, et al. Combining cisplatin with cationized catalase decreases nephrotoxicity while improving antitumor activity. Kidney Int. 2007;72(12):1474–82. doi:10.1038/sj.ki.5002556.

    Article  CAS  PubMed  Google Scholar 

  45. Deng H, Shen W, Peng Y, Chen X, Yi G, Gao Z. Nanoparticulate peroxidase/catalase mimetic and its application. Chem Eur J. 2012;18(29):8906–11. doi:10.1002/chem.201200643.

    Article  CAS  PubMed  Google Scholar 

  46. Howard MD, Greineder CF, Hood ED, Muzykantov VR. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation. J Control Release. 2014;177:34–41. doi:10.1016/j.jconrel.2013.12.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giordano RJ, Edwards JK, Tuder RM, Arap W, Pasqualini R. Combinatorial ligand-directed lung targeting. Proc Am Thorac Soc. 2009;6(5):411–5. doi:10.1513/pats.200903-014AW.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Brazilians funds MCT/CNPq Universal (470306/2011-4), PRONEX/FAPERGS (1000274), PRONEM/FAPERGS (11/2032-5), PqG/FAPERGS (2414-2551/12-8), MCT/CNPq INCT-TM (573671/2008-7), and FAPERGS/MS/CNPq/SESRS/PPSUS (1121-2551/13-8) provided the financial support without interference in the ongoing work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Klamt.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(GIF 434 kb)

High resolution image (TIFF 2.85 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, V.A., da Motta, L.L., De Bastiani, M.A. et al. In vitro evaluation of antitumoral efficacy of catalase in combination with traditional chemotherapeutic drugs against human lung adenocarcinoma cells. Tumor Biol. 37, 10775–10784 (2016). https://doi.org/10.1007/s13277-016-4973-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4973-6

Keywords

Navigation