Skip to main content

Advertisement

Log in

Plexin-B1 indirectly affects glioma invasiveness and angiogenesis by regulating the RhoA/αvβ3 signaling pathway and SRPK1

  • Original Article
  • Published:
Tumor Biology

Abstract

Gliomas are one of the most common primary brain tumors in adults. They display aggressive invasiveness, are highly vascular, and have a poor prognosis. Plexin-B1 is involved in numerous cellular processes, especially cellular migration and angiogenesis. However, the role and regulatory mechanisms of Plexin-B1 in gliomas are not understood and were thus investigated in this study. By using multiple and diverse experimental techniques, we investigated cell apoptosis, mitochondrial membrane potential, cell migration and invasion, angiogenesis, PI3K and Akt phosphorylation, and also the levels of SRPK1 and αvβ3 in glioma cells and animal glioma tissues. The results indicated that Plexin-B1 expression in glioma cell lines is increased compared to normal human astrocytes. Plexin-B1 mediates RhoA/integrin αvβ3 involved in the PI3K/Akt pathway and SRPK1 to influence the growth of glioma cell, angiogenesis, and motility in vitro and in vivo. Thus, Plexin-B1 signaling regulates the Rho/αvβ3/PI3K/Akt pathway and SRPK1, which are involved in glioma invasiveness and angiogenesis. Therefore, the new drug research should focus on Plexin-B1 as a target for the treatment of glioma invasion and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Statistics Korea. Statistic of mortality (2014) http://www.nso.go.kr/.

  2. Soderberg-Naucler C, Rahbar A, Stragliotto G. Survival in patients with glioblastoma receiving valganciclovir. N Engl J Med. 2013;369:985–6.

    Article  PubMed  Google Scholar 

  3. Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell. 1999;99:71–80.

    Article  CAS  PubMed  Google Scholar 

  4. Vodrazka P, Korostylev A, Hirschberg A, Swiercz JM, Worzfeld T, Deng S, et al. The semaphorin 4D-plexin-B signalling complex regulates dendritic and axonal complexity in developing neurons via diverse pathways. Eur J Neurosci. 2009;30:1193–208.

    Article  PubMed  Google Scholar 

  5. Giacobini P, Messina A, Morello F, Ferraris N, Corso S, Penachioni J, et al. Semaphorin 4D regulates gonadotropin hormone-releasing hormone-1 neuronal migration through PlexinB1-Met complex. J Cell Biol. 2008;183:555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17:1473–80.

    Article  CAS  PubMed  Google Scholar 

  7. Worzfeld T, Swiercz JM, Looso M, Straub BK, Sivaraj KK, Offermanns S. ErbB-2 signals through Plexin-B1 to promote breast cancer metastasis. J Clin Invest. 2012;122:1296–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou H, Binmadi NO, Yang YH, Proia P, Basile JR. Semaphorin 4D cooperates with VEGF to promote angiogenesis and tumor progression. Angiogenesis. 2012;15:391–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou Y, Gunput RA, Pasterkamp RJ. Semaphorin signaling: progress made and promises ahead. Trends Biochem Sci. 2008;33:161–70.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Li Q, Zhuang R, Gao Z, Liu J, Li J, et al. Plexin-B1: a potential diagnostic biomarker for glioma and a future target for glioma immunotherapy. J Neuroimmunol. 2012;252:113–7.

    Article  CAS  PubMed  Google Scholar 

  11. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kinbara K, Goldfinger LE, Hansen M, Chou FL, Ginsberg MH. Ras GTPases: integrins’ friends or foes? Nat Rev Mol Cell Biol. 2003;4:767–76.

    Article  CAS  PubMed  Google Scholar 

  13. Skuli N, Monferran S, Delmas C, Favre G, Bonnet J, Toulas C, et al. Alphavbeta3/alphavbeta5 integrins-FAK-RhoB: a novel pathway for hypoxia regulation in glioblastoma. Cancer Res. 2009;69:3308–16.

    Article  CAS  PubMed  Google Scholar 

  14. Ellegala DB, Leong-Poi H, Carpenter JE, Klibanov AL, Kaul S, Shaffrey ME, et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation. 2003;108:336–41.

    Article  PubMed  Google Scholar 

  15. Zhou B, Li Y, Deng Q, Wang H, Wang Y, Cai B, et al. SRPK1 contributes to malignancy of hepatocellular carcinoma through a possible mechanism involving PI3K/Akt. Mol Cell Biochem. 2013;379:191–9.

    Article  CAS  PubMed  Google Scholar 

  16. Wang P, Zhou Z, Hu A, Ponte de Albuquerque C, Zhou Y, Hong L, et al. Both decreased and increased SRPK1 levels promote cancer by interfering with PHLPP-mediated dephosphorylation of Akt. Mol Cell. 2014;54:378–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu Q, Chang Y, Zhang L, Zhang Y, Tian T, Feng G, et al. SRPK1 dissimilarly impacts on the growth, metastasis, chemosensitivity and angiogenesis of glioma in normoxic and hypoxic conditions. J Cancer. 2013;4:727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dussault AA, Pouliot M. Rapid and simple comparison of messenger RNA levels using real-time PCR. Biol Proced Online. 2006;8:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirota K, Semenza GL. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol. 2006;59:15–26.

    Article  PubMed  Google Scholar 

  20. Basile JR, Gavard J, Gutkind JS. Plexin-B1 utilizes RhoA and Rho kinase to promote the integrin-dependent activation of Akt and ERK and endothelial cell motility. J Biol Chem. 2007;282:34888–95.

    Article  CAS  PubMed  Google Scholar 

  21. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG. Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol. 2004;36:1046–69.

    Article  CAS  PubMed  Google Scholar 

  22. Neufeld G, Shraga-Heled N, Lange T, Guttmann-Raviv N, Herzog Y, Kessler O. Semaphorins in cancer. Front Biosci. 2005;10:751–60.

    Article  PubMed  Google Scholar 

  23. Goldberg L, Kloog Y. A Ras inhibitor tilts the balance between Rac and Rho and blocks phosphatidylinositol 3-kinase-dependent glioblastoma cell migration. Cancer Res. 2006;66:11709–17.

    Article  CAS  PubMed  Google Scholar 

  24. Wolfenson H, Lavelin I, Geiger B. Dynamic regulation of the structure and functions of integrin adhesions. Dev Cell. 2013;24:447–58.

    Article  CAS  PubMed  Google Scholar 

  25. Ye S, Hao X, Zhou T, Wu M, Wei J, Wang Y, et al. Plexin-B1 silencing inhibits ovarian cancer cell migration and invasion. BMC Cancer. 2010;10:611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Argast GM, Croy CH, Couts KL, Zhang Z, Litman E, Chan DC, et al. Plexin B1 is repressed by oncogenic B-Raf signaling and functions as a tumor suppressor in melanoma cells. Oncogene. 2009;28:2697–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gomez Roman JJ, Garay GO, Saenz P, Escuredo K, Sanz Ibayondo C, Gutkind S, et al. Plexin B1 is downregulated in renal cell carcinomas and modulates cell growth. Transl Res. 2008;151:134–40.

    Article  CAS  PubMed  Google Scholar 

  28. Amin EM, Oltean S, Hua J, Gammons MV, Hamdollah-Zadeh M, Welsh GI, et al. WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell. 2011;20:768–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou H, Yang YH, Basile JR. The Semaphorin 4D-Plexin-B1-RhoA signaling axis recruits pericytes and regulates vascular permeability through endothelial production of PDGF-B and ANGPTL4. Angiogenesis. 2014;17:261–74.

    Article  CAS  PubMed  Google Scholar 

  30. Mahabeleshwar GH, Feng W, Reddy K, Plow EF, Byzova TV. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res. 2007;101:570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by the Key Project of the National Natural Science Foundation of Shandong Province (ZR 2009CL004), the China Postdoctoral Science Foundation (20100481466), the Foundation of Taishan Scholar (tshw20110575), the Pharmaceutical Health Science and Technology Development Program of Shandong Province (2011QZ001, 2013G0021816), the National Natural Science Foundation of China (81171142/H0910, 81271092, 61427807), a Project of the Shandong Province Higher Educational Science and Technology Program (J11LF61), and the Program of Major Research and Development Institutions in Fujian Province (2012I2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yang or Fei Huang.

Ethics declarations

Conflicts of interest

None

Additional information

Yingwei Chang and Li Li contributed to this work equally and should be considered as co-first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Li, L., Zhang, L. et al. Plexin-B1 indirectly affects glioma invasiveness and angiogenesis by regulating the RhoA/αvβ3 signaling pathway and SRPK1. Tumor Biol. 37, 11225–11236 (2016). https://doi.org/10.1007/s13277-016-4849-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4849-9

Keywords

Navigation