Skip to main content
Log in

Piperlongumine induces gastric cancer cell apoptosis and G2/M cell cycle arrest both in vitro and in vivo

  • Original Article
  • Published:
Tumor Biology

Abstract

Recently, several studies have shown that piperlongumine (PL) can selectively kill cancer cells by targeting reactive oxygen species (ROS). However, the potential therapeutic effects and detailed mechanism of PL in gastric cancer are still not clear. In the current report, we found that PL significantly suppressed gastric cancer both in vitro and in vivo. PL obviously increased ROS generation in gastric cancer cells. Anti-oxidant glutathione (GSH) and N-acetyl-l-cysteine (NAC) can abrogate PL-induced gastric cancer cell death and proliferation inhibition. GADD45α was induced in PL-treated cancer cells and led to G2/M phase arrest, whereas genetic depletion of GADD45α by small interfering RNAs (siRNAs) could partly reverse PL-induced cell cycle arrest in gastric cancer cells. Interestingly, we also found that PL treatment decreased the expression of telomerase reverse transcriptase (TERT) gene, which plays an essential role in cancer initiation and progression. Our findings thus revealed a potential anti-tumor effect of PL on gastric cancer cells and may have therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

NAC:

N-acetyl-l-cysteine

GSH:

Glutathione

DCF-DA:

2′,7′-Dichlorofluorescein diacetate

PARP:

Poly(ADP-ribose) polymerase

siRNA:

Small interfering RNA

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling

TERT:

Telomerase reverse transcriptase

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Lin Y, Ueda J, Kikuchi S, Totsuka Y, Wei WQ, Qiao YL, et al. Comparative epidemiology of gastric cancer between Japan and China. World J Gastroenterol. 2011;17:4421–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lordick F, Allum W, Carneiro F, Mitry E, Tabernero J, Tan P, et al. Unmet needs and challenges in gastric cancer: the way forward. Cancer Treat Rev. 2014;40:692–700.

    Article  PubMed  Google Scholar 

  4. Chatterjee A, Dutta CP. Alkaloids of Piper longum Linn. I. Structure and synthesis of piperlongumine and piperlonguminine. Tetrahedron. 1967;23:1769–81.

    Article  CAS  PubMed  Google Scholar 

  5. Bharadwaj U, Eckols TK, Kolosov M, Kasembeli MM, Adam A, Torres D, et al. Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer. Oncogene. 2015;34:1341–53.

    Article  CAS  PubMed  Google Scholar 

  6. Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature. 2011;475:231–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roh JL, Kim EH, Park JY, Kim JW, Kwon M, Lee BH. Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer. Oncotarget. 2014;5:9227–38.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li J, Sharkey CC, King MR. Piperlongumine and immune cytokine trail synergize to promote tumor death. Sci Rep. 2015;5:9987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Golovine K, Makhov P, Naito S, Raiyani H, Tomaszewski J, Mehrazin R, et al. Piperlongumine and its analogs down-regulate expression of c-met in renal cell carcinoma. Cancer Biol Ther. 2015;16:743–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Makhov P, Golovine K, Teper E, Kutikov A, Mehrazin R, Corcoran A, et al. Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death. Br J Cancer. 2014;110:899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ding X, Zhang B, Pei Q, Pan J, Huang S, Yang Y, et al. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1. BMC Cancer. 2014;14:271.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen M, Huang SL, Zhang XQ, Zhang B, Zhu H, Yang VW, et al. Reversal effects of pantoprazole on multidrug resistance in human gastric adenocarcinoma cells by down-regulating the V-ATPases/MTOR/HIF-1alpha/P-gp and MRP1 signaling pathway in vitro and in vivo. J Cell Biochem. 2012;113:2474–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang B, Chen J, Cheng AS, Ko BC. Depletion of sirtuin 1 (SIRT1) leads to epigenetic modifications of telomerase (TERT) gene in hepatocellular carcinoma cells. Plos One. 2014;9:e84931.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang B, Yang Y, Shi X, Liao W, Chen M, Cheng AS, et al. Proton pump inhibitor pantoprazole abrogates adriamycin-resistant gastric cancer cell invasiveness via suppression of Akt/GSK-beta/beta-catenin signaling and epithelial-mesenchymal transition. Cancer Lett. 2015;356:704–12.

    Article  CAS  PubMed  Google Scholar 

  15. Jin S, Tong T, Fan W, Fan F, Antinore MJ, Zhu X, et al. GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene. 2002;21:8696–704.

    Article  CAS  PubMed  Google Scholar 

  16. Yabal M, Muller N, Adler H, Knies N, Gross CJ, Damgaard RB, et al. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep. 2014;7:1796–808.

    Article  CAS  PubMed  Google Scholar 

  17. Paschall AV, Zimmerman MA, Torres CM, Yang D, Chen MR, Li X, et al. Ceramide targets xIAP and cIAP1 to sensitize metastatic colon and breast cancer cells to apoptosis induction to suppress tumor progression. BMC Cancer. 2014;14:24.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moreno-Martinez D, Nomdedeu M, Lara-Castillo MC, Etxabe A, Pratcorona M, Tesi N, et al. XIAP inhibitors induce differentiation and impair clonogenic capacity of acute myeloid leukemia stem cells. Oncotarget. 2014;5:4337–46.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13:184–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Indran IR, Hande MP, Pervaiz S. hTERT overexpression alleviates intracellular ROS production, improves mitochondrial function, and inhibits ROS-mediated apoptosis in cancer cells. Cancer Res. 2011;71:266–76.

    Article  CAS  PubMed  Google Scholar 

  21. Wang YY, Sun G, Luo H, Wang XF, Lan FM, Yue X, et al. MiR-21 modulates HTERT through a STAT3-dependent manner on glioblastoma cell growth. CNS Neurosci Ther. 2012;18:722–8.

    Article  CAS  PubMed  Google Scholar 

  22. Chung SS, Aroh C, Vadgama JV. Constitutive activation of STAT3 signaling regulates HTERT and promotes stem cell-like traits in human breast cancer cells. PLoS One. 2013;8:e83971.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Konnikova L, Simeone MC, Kruger MM, Kotecki M, Cochran BH. Signal transducer and activator of transcription 3 (STAT3) regulates human telomerase reverse transcriptase (HTERT) expression in human cancer and primary cells. Cancer Res. 2005;65:6516–20.

    Article  CAS  PubMed  Google Scholar 

  24. Shulga N, Pastorino JG. GRIM-19-mediated translocation of STAT3 to mitochondria is necessary for TNF-induced necroptosis. J Cell Sci. 2012;125:2995–3003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jin HO, Lee YH, Park JA, Lee HN, Kim JH, Kim JY, et al. Piperlongumine induces cell death through ROS-mediated chop activation and potentiates trail-induced cell death in breast cancer cells. J Cancer Res Clin Oncol. 2014;140:2039–46.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Liu JM, Xiong XX, Qiu XY, Pan F, Liu D, et al. Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKS-CHOP. Oncotarget. 2015;6:6406–21.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci U S A. 1999;96:3706–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vairapandi M, Balliet AG, Hoffman B, Liebermann DA. GADD45b and GADD45g are cdc2/cyclinb1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol. 2002;192:327–38.

    Article  CAS  PubMed  Google Scholar 

  29. Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF. GADD45 proteins: central players in tumorigenesis. Curr Mol Med. 2012;12:634–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nurse P. The central role of a CDK in controlling the fission yeast cell cycle. Harvey Lect. 1996;92:55–64.

    PubMed  Google Scholar 

  31. Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC, et al. Association with Cdc2 and inhibition of Cdc2/cyclin B1 kinase activity by the p53-regulated protein GADD45. Oncogene. 1999;18:2892–900.

    Article  CAS  PubMed  Google Scholar 

  32. Silke J, Meier P. Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb Perspect Biol. 2013;5:a008730.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gyrd-Hansen M, Meier P. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer. 2010;10:561–74.

    Article  CAS  PubMed  Google Scholar 

  34. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res. 2000;6:1796–803.

    CAS  PubMed  Google Scholar 

  35. Silke J, Vucic D. IAP family of cell death and signaling regulators. Methods Enzymol. 2014;545:35–65.

    Article  CAS  PubMed  Google Scholar 

  36. Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ. 2006;13:363–73.

    Article  CAS  PubMed  Google Scholar 

  37. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004;18:3066–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11:381–9.

    Article  CAS  PubMed  Google Scholar 

  39. Sanchez AM, Martinez-Botas J, Malagarie-Cazenave S, Olea N, Vara D, Lasuncion MA, et al. Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: a microarray study. Biochem Biophys Res Commun. 2008;372:785–91.

    Article  CAS  PubMed  Google Scholar 

  40. Li H, Chang G, Wang J, Wang L, Jin W, Lin Y, et al. Cariporide sensitizes leukemic cells to tumor necrosis factor related apoptosis-inducing ligand by up-regulation of death receptor 5 via endoplasmic reticulum stress-CCAAT/enhancer binding protein homologous protein dependent mechanism. Leuk lymphoma. 2014;55:2135–40.

    Article  CAS  PubMed  Google Scholar 

  41. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. Chop is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12:982–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma J, Qiu Y, Yang L, Peng L, Xia Z, Hou LN, et al. Desipramine induces apoptosis in rat glioma cells via endoplasmic reticulum stress-dependent chop pathway. J Neuro-Oncol. 2011;101:41–8.

    Article  CAS  Google Scholar 

  43. Low KC, Tergaonkar V. Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci. 2013;38:426–34.

    Article  CAS  PubMed  Google Scholar 

  44. Blackburn EH. The end of the (DNA) line. Nat Struct Biol. 2000;7:847–50.

    Article  CAS  PubMed  Google Scholar 

  45. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33:787–91.

    Article  CAS  PubMed  Google Scholar 

  46. Smith LL, Coller HA, Roberts JM. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol. 2003;5:474–9.

    Article  CAS  PubMed  Google Scholar 

  47. Li S, Rosenberg JE, Donjacour AA, Botchkina IL, Hom YK, Cunha GR, et al. Rapid inhibition of cancer cell growth induced by lentiviral delivery and expression of mutant-template telomerase RNA and anti-telomerase short-interfering RNA. Cancer Res. 2004;64:4833–40.

    Article  CAS  PubMed  Google Scholar 

  48. Mattiussi M, Tilman G, Lenglez S, Decottignies A. Human telomerase represses ROS-dependent cellular responses to tumor necrosis factor-alpha without affecting NF-kappaB activation. Cell Signal. 2012;24:708–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Zou.

Ethics declarations

Conflicts of interest

None

Funding

This study was supported by the National Natural Science Foundation of China (No. 81401974, No. 81472756, No. 81272742, and No. 81401977) and by the Natural Science Foundation from the Department of Science &Technology of Jiangsu Province (BK20140104) as well as the Outstanding Youth Project of Nanjing City (JQX14005).

Additional information

Chaoqin Duan and Bin Zhang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(PPTX 375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, C., Zhang, B., Deng, C. et al. Piperlongumine induces gastric cancer cell apoptosis and G2/M cell cycle arrest both in vitro and in vivo. Tumor Biol. 37, 10793–10804 (2016). https://doi.org/10.1007/s13277-016-4792-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4792-9

Keywords

Navigation