Skip to main content
Log in

Upregulation of CD44v6 contributes to acquired chemoresistance via the modulation of autophagy in colon cancer SW480 cells

  • Original Article
  • Published:
Tumor Biology

Abstract

The CD44 isoform containing variant exon v6 (CD44v6) plays an important role in the progression, metastasis, and prognosis of colorectal cancer (CRC). Recently, it was found that CD44v6 is involved in acquired drug resistance. This study aimed to investigate the molecular mechanism of CD44v6 in the resistance of CRC cells to chemotherapy. A stable CD44v6 overexpression model in SW480 cells was established via lentiviral transduction. The chemosensitivity of cells to 5-fluorouracil (5-FU) and oxaliplatin (L-OHP) was determined by cell counting kit (CCK)-8, lactate dehydrogenase (LDH) release, and colony formation assays. Immunohistochemical staining of CD44v6 was performed in human CRC tissues. The key components in cell apoptosis, drug efflux and metabolism, mismatch repair, autophagy, epithelial–mesenchymal transition (EMT), and the PI3K–Akt and MAPK–Ras–Erk1/2 pathways were assessed using flow cytometry, quantitative real-time polymerase chain reaction (PCR), and western blot assays. The CD44v6 overexpression cells showed a higher viability, a lower LDH release rate, and an increased clonogenicity than the control cells under drug treatment. Moreover, overexpression of CD44v6 resulted in enhanced autophagy flux, EMT, and phosphorylation of Akt and Erk in the presence of drugs. Furthermore, high CD44v6 expression in the primary tumor was closely associated with an early recurrence in CRC patients who underwent curative surgery and adjuvant chemotherapy. In conclusion, overexpression of CD44v6 contributes to chemoresistance in SW480 cells under cytotoxic stress via the modulation of autophagy, EMT, and activation of the PI3K–Akt and MAPK–Ras–Erk pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, et al. Colorectal cancer. Lancet. 2010;375(9719):1030–47.

    Article  PubMed  Google Scholar 

  2. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–26. doi:10.1038/nrc3599.

    Article  CAS  PubMed  Google Scholar 

  3. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205(2):275–92. doi:10.1002/path.1706.

    Article  CAS  PubMed  Google Scholar 

  4. De Mattia E, Cecchin E, Toffoli G. Pharmacogenomics of intrinsic and acquired pharmacoresistance in colorectal cancer: toward targeted personalized therapy. Drug Resist Updat. 2015;20:39–70. doi:10.1016/j.drup.2015.05.003.

    Article  PubMed  Google Scholar 

  5. Perez-Tomas R. Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr Med Chem. 2006;13(16):1859–76. doi:10.2174/092986706777585077.

    Article  CAS  PubMed  Google Scholar 

  6. Glavinas H, Krajcsi P, Cserepes J, Sarkadi B. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv. 2004;1(1):27–42. doi:10.2174/1567201043480036.

    Article  CAS  PubMed  Google Scholar 

  7. Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 2003;22(47):7369–75. doi:10.1038/sj.onc.1206940.

    Article  CAS  PubMed  Google Scholar 

  8. Giles GI, Sharma RP. Topoisomerase enzymes as therapeutic targets for cancer chemotherapy. Med Chem. 2005;1(4):383–94.

    Article  CAS  PubMed  Google Scholar 

  9. Kirschner K, Melton DW. Multiple roles of the ERCC1-XPF endonuclease in DNA repair and resistance to anticancer drugs. Anticancer Res. 2010;30(9):3223–32.

    CAS  PubMed  Google Scholar 

  10. Lage H, Dietel M. Involvement of the DNA mismatch repair system in antineoplastic drug resistance. J Cancer Res Clin Oncol. 1999;125(3–4):156–65.

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez-Nieto S, Zhivotovsky B. Role of alterations in the apoptotic machinery in sensitivity of cancer cells to treatment. Curr Pharm Des. 2006;12(34):4411–25.

    Article  CAS  PubMed  Google Scholar 

  12. Lai K, Killingsworth MC, Lee CS. The significance of autophagy in colorectal cancer pathogenesis and implications for therapy. J Clin Pathol. 2014;67(10):854–8. doi:10.1136/jclinpath-2014-202529.

    Article  CAS  PubMed  Google Scholar 

  13. McCubrey JA, Steelman LS, Kempf CR, Chappell WH, Abrams SL, Stivala F, et al. Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. J Cell Physiol. 2011;226(11):2762–81. doi:10.1002/jcp.22647.

    Article  CAS  PubMed  Google Scholar 

  14. Sui H, Zhu L, Deng WL, Li Q. Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat. 2014;37(10):584–9. doi:10.1159/000367802.

    Article  CAS  PubMed  Google Scholar 

  15. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4(1):33–45. doi:10.1038/nrm1004.

    Article  CAS  PubMed  Google Scholar 

  16. Coppola D, Hyacinthe M, Fu L, Cantor AB, Karl R, Marcet J, et al. CD44V6 expression in human colorectal carcinoma. Hum Pathol. 1998;29(6):627–35.

    Article  CAS  PubMed  Google Scholar 

  17. Zlobec I, Gunthert U, Tornillo L, Iezzi G, Baumhoer D, Terracciano L, et al. Systematic assessment of the prognostic impact of membranous CD44v6 protein expression in colorectal cancer. Histopathology. 2009;55(5):564–75. doi:10.1111/j.1365-2559.2009.03421.x.

    Article  PubMed  Google Scholar 

  18. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 2014;14(3):342–56. doi:10.1016/j.stem.2014.01.009.

    Article  CAS  PubMed  Google Scholar 

  19. Reinhold WC, Sunshine M, Liu H, Varma S, Kohn KW, Morris J, et al. Cell miner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 2012;72(14):3499–511. doi:10.1158/0008-5472.CAN-12-1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Larionov A, Krause A, Miller W. A standard curve based method for relative real time PCR data processing. BMC Bioinformatics. 2005;6:62. doi:10.1186/1471-2105-6-62.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yanamoto S, Yamada S, Takahashi H, Naruse T, Matsushita Y, Ikeda H, et al. Expression of the cancer stem cell markers CD44v6 and ABCG2 in tongue cancer: effect of neoadjuvant chemotherapy on local recurrence. Int J Oncol. 2014;44(4):1153–62. doi:10.3892/ijo.2014.2289.

    CAS  PubMed  Google Scholar 

  23. Costa S, Terzano P, Bovicelli A, Martoni A, Angelelli B, Santini D, et al. CD44 isoform 6 (CD44v6) is a prognostic indicator of the response to neoadjuvant chemotherapy in cervical carcinoma. Gynecol Oncol. 2001;80(1):67–73. doi:10.1006/gyno.2000.6016.

    Article  CAS  PubMed  Google Scholar 

  24. Bendardaf R, Lamlum H, Ristamaki R, Pyrhonen S. CD44 variant 6 expression predicts response to treatment in advanced colorectal cancer. Oncol Rep. 2004;11(1):41–5.

    CAS  PubMed  Google Scholar 

  25. Niu RF, Zhang J, Huang JY. Expression of CD44v6 before and after chemotherapy in patients with breast cancer and its significance. Ai Zheng. 2002;21(1):71–4.

    PubMed  Google Scholar 

  26. Recio JA, Merlino G. Hepatocyte growth factor/scatter factor induces feedback up-regulation of CD44v6 in melanoma cells through Egr-1. Cancer Res. 2003;63(7):1576–82.

    CAS  PubMed  Google Scholar 

  27. Gao C, Guo H, Downey L, Marroquin C, Wei J, Kuo PC. Osteopontin-dependent CD44v6 expression and cell adhesion in HepG2 cells. Carcinogenesis. 2003;24(12):1871–8. doi:10.1093/carcin/bgg139.

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Zha XM, Wang R, Li XD, Xu B, Xu YJ, et al. Regulation of CD44 expression by tumor necrosis factor-alpha and its potential role in breast cancer cell migration. Biomed Pharmacother. 2012;66(2):144–50. doi:10.1016/j.biopha.2011.11.021.

    Article  CAS  PubMed  Google Scholar 

  29. Quinones A, Dobberstein KU, Rainov NG. The egr-1 gene is induced by DNA-damaging agents and non-genotoxic drugs in both normal and neoplastic human cells. Life Sci. 2003;72(26):2975–92.

    Article  CAS  PubMed  Google Scholar 

  30. Damm S, Koefinger P, Stefan M, Wels C, Mehes G, Richtig E, et al. HGF-promoted motility in primary human melanocytes depends on CD44v6 regulated via NF-kappa B, Egr-1, and C/EBP-beta. J Invest Dermatol. 2010;130(7):1893–903. doi:10.1038/jid.2010.45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hebbard L, Steffen A, Zawadzki V, Fieber C, Howells N, Moll J, et al. CD44 expression and regulation during mammary gland development and function. J Cell Sci. 2000;113(Pt 14):2619–30.

    CAS  PubMed  Google Scholar 

  32. Ni J, Cozzi PJ, Hao JL, Beretov J, Chang L, Duan W, et al. CD44 variant 6 is associated with prostate cancer metastasis and chemo-/radioresistance. Prostate. 2014;74(6):602–17. doi:10.1002/pros.22775.

    Article  CAS  PubMed  Google Scholar 

  33. Miletti-Gonzalez KE, Chen S, Muthukumaran N, Saglimbeni GN, Wu X, Yang J, et al. The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Res. 2005;65(15):6660–7. doi:10.1158/0008-5472.CAN-04-3478.

    Article  CAS  PubMed  Google Scholar 

  34. Liu CM, Chang CH, Yu CH, Hsu CC, Huang LL. Hyaluronan substratum induces multidrug resistance in human mesenchymal stem cells via CD44 signaling. Cell Tissue Res. 2009;336(3):465–75. doi:10.1007/s00441-009-0780-3.

    Article  CAS  PubMed  Google Scholar 

  35. Misra S, Ghatak S, Toole BP. Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2. J Biol Chem. 2005;280(21):20310–5. doi:10.1074/jbc.M500737200.

    Article  CAS  PubMed  Google Scholar 

  36. Xu ZY, Tang JN, Xie HX, Du YA, Huang L, Yu PF, et al. 5-Fluorouracil chemotherapy of gastric cancer generates residual cells with properties of cancer stem cells. Int J Biol Sci. 2015;11(3):284–94. doi:10.7150/ijbs.10248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7(12):961–7. doi:10.1038/nrc2254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li J, Hou N, Faried A, Tsutsumi S, Takeuchi T, Kuwano H. Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol. 2009;16(3):761–71. doi:10.1245/s10434-008-0260-0.

    Article  PubMed  Google Scholar 

  39. Sasaki K, Tsuno NH, Sunami E, Kawai K, Hongo K, Hiyoshi M, et al. Resistance of colon cancer to 5-fluorouracil may be overcome by combination with chloroquine, an in vivo study. Anticancer Drugs. 2012;23(7):675–82. doi:10.1097/CAD.0b013e328353f8c7.

    Article  CAS  PubMed  Google Scholar 

  40. Sasaki K, Tsuno NH, Sunami E, Tsurita G, Kawai K, Okaji Y, et al. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer. 2010;10:370. doi:10.1186/1471-2407-10-370.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Park JM, Huang S, Wu TT, Foster NR, Sinicrope FA. Prognostic impact of Beclin 1, p62/sequestosome 1 and LC3 protein expression in colon carcinomas from patients receiving 5-fluorouracil as adjuvant chemotherapy. Cancer Biol Ther. 2013;14(2):100–7. doi:10.4161/cbt.22954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zaanan A, Park JM, Tougeron D, Huang S, Wu TT, Foster NR, et al. Association of beclin 1 expression with response to neoadjuvant chemoradiation therapy in patients with locally advanced rectal carcinoma. Int J Cancer. 2015;137(6):1498–502. doi:10.1002/ijc.29496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ogier-Denis E, Pattingre S, El Benna J, Codogno P. Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem. 2000;275(50):39090–5. doi:10.1074/jbc.M006198200.

    Article  CAS  PubMed  Google Scholar 

  44. Levine B, Sinha S, Kroemer G. Bcl-2 family members—dual regulators of apoptosis and autophagy. Autophagy. 2008;4(5):600–6.

    Article  CAS  PubMed Central  Google Scholar 

  45. Graziani A, Gramaglia D, Cantley LC, Comoglio PM. The tyrosine-phosphorylated hepatocyte growth factor/scatter factor receptor associates with phosphatidylinositol 3-kinase. J Biol Chem. 1991;266(33):22087–90.

    CAS  PubMed  Google Scholar 

  46. Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 2002;16(23):3074–86. doi:10.1101/gad.242602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Klingbeil P, Marhaba R, Jung T, Kirmse R, Ludwig T, Zoller M. CD44 variant isoforms promote metastasis formation by a tumor cell-matrix cross-talk that supports adhesion and apoptosis resistance. Mol Cancer Res. 2009;7(2):168–79. doi:10.1158/1541-7786.MCR-08-0207.

    Article  CAS  PubMed  Google Scholar 

  48. Jung T, Gross W, Zoller M. CD44v6 coordinates tumor matrix-triggered motility and apoptosis resistance. J Biol Chem. 2011;286(18):15862–74. doi:10.1074/jbc.M110.208421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Foundation from the Health Bureau of Wenzhou City of Zhejiang, China (Y20140713) and by the Incubation Program from The First Affiliated Hospital of Wenzhou Medical University (FHY2014013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hua Zhang.

Ethics declarations

Conflicts of interest

None

Additional information

Lin Lv and Hai-Guang Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, L., Liu, HG., Dong, SY. et al. Upregulation of CD44v6 contributes to acquired chemoresistance via the modulation of autophagy in colon cancer SW480 cells. Tumor Biol. 37, 8811–8824 (2016). https://doi.org/10.1007/s13277-015-4755-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4755-6

Keywords

Navigation