Skip to main content

Advertisement

Log in

Inhibition of phospholipaseD2 increases hypoxia-induced human colon cancer cell apoptosis through inactivating of the PI3K/AKT signaling pathway

  • Original Article
  • Published:
Tumor Biology

Abstract

Hypoxia is a common feature of solid tumor, and is a direct stress that triggers apoptosis in many human cell types. As one of solid cancer, hypoxia exists in the whole course of colon cancer occurrence and progression. Our previous studies shown that hypoxia induce high expression of phospholipase D2 (PLD2) and survivin in colon cancer cells. However, the correlation between PLD2 and survivin in hypoxic colon cancer cells remains unknown. In this study, we observed significantly elevated PLD2 and survivin expression levels in colon cancer tissues and cells. This is a positive correlation between of them, and co-expression of PLD2 and survivin has a positive correlation with the clinicpatholic features including tumor size, TNM stage, and lymph node metastasis. We also found that hypoxia induced the activity of PLD increased significant mainly caused by PLD2 in colon cancer cells. However, inhibition the activity of PLD2 induced by hypoxia promotes the apoptosis of human colon cancer cells, as well as decreased the expression of apoptosis markers including survivin and bcl2. Moreover, the pharmacological inhibition of PI3K/AKT supported the hypothesis that promotes the apoptosis of hypoxic colon cancer cells by PLD2 activity inhibition may through inactivation of the PI3K/AKT signaling pathway. Furthermore, interference the PLD2 gene expression leaded to the apoptosis of hypoxic colon cancer cells increased and also decreased the expression level of survivin and bcl2 may through inactivation of PI3K/AKT signaling pathway. These results indicated that PLD2 play antiapoptotic role in colon cancer under hypoxic conditions, inhibition of the activity, or interference of PLD2 gene expression will benefit for the treatment of colon cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics,2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  3. Igney FH, Krammer PH. Death and anti-death: tumor resistance to apoptosis. Nat Rev Cancer. 2002;2:277–88.

    Article  CAS  PubMed  Google Scholar 

  4. Nakashima S, Nozawa Y. Possible role of phospholipase D in cellular differentiation and apoptosis. Chem Phys Lipids. 1999;98:153–64.

    Article  CAS  PubMed  Google Scholar 

  5. Uchida N, Okamura S, Kuwano H. Phospholipase D activity in human gastric carcinoma. Anticancer Res. 1999;19:77–86.

    Google Scholar 

  6. Ahn MJ, Park SY, Kim WK, Cho JH, Chang BJ, Kim DJ, et al. A single nucleotide polymorphism in the phospholipase D1 gene is associated with risk of non-small lung cancer. Int J Biomed Sci. 2012;8:121–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Toschi A, Edelstein J, Rockwell P, Ohh M, Foster DA. HIF alpha expression in VHL-deficient renal cancer cells is dependent on phospholipase D. Oncogene. 2008;27:2746–53.

    Article  CAS  PubMed  Google Scholar 

  8. Noh DY, Ahn SJ, Lee RA, Park IA, Kim JH, Suh PG, et al. Overexpression of phospholipase D in human breast cancer tissues. Cancer Lett. 2000;161:207–14.

    Article  CAS  PubMed  Google Scholar 

  9. Cho JH, Hong S-K, Kim E-Y, Park S-Y, Park C-H, et al. Overexpression of phospholipase D suppress taxotere-induced cell death in stomach cancer cells. Biochim Biophys Acta. 2008;1783:912–3.

    Article  CAS  PubMed  Google Scholar 

  10. Kim K-OK, Lee K-H, Kim Y-H, Park S-K, Han J-S. Anti-apoptotic role of phospholipase D isozymes in the glutamate-induced cell death. Exp Mol Med. 2003;35:38–45.

    Article  CAS  PubMed  Google Scholar 

  11. Zhong M, Shen Y, Yang Z, Joseph T, Jackson D, et al. Phospholipase D prevent apoptosis in v-Src-transformed rat fibroblasts and MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun. 2003;302:615–9.

    Article  CAS  PubMed  Google Scholar 

  12. Peng JHF, Feng Y, Rhodes PG. Down-regulation of phospholipase D2 mRNA in neonatal rat brainstem and cerebellum after hypoxia-ischemia. Neurochem Res. 2006;31:1191–6.

    Article  CAS  PubMed  Google Scholar 

  13. Mozzicato S, Joshi BV, Jacobson KA, Liang BT. Role of direct RhoA phospholipase D1 interaction in mediating adenosine-induced protection from cardiac ischemia. FASEB J. 2004;18:406–8.

    CAS  PubMed  Google Scholar 

  14. Lee SD, Lee BD, Han JM, Kim JH, Kim Y, et al. Phospholipase D2 activity suppresses hydrogen peroxide-induced apoptosis in PC12 cells. J Neurochem. 2000;75:1053–9.

    Article  CAS  PubMed  Google Scholar 

  15. Yamakawa H, Banno Y, Nakashima S, Sawada M, Yamada J, Yoshimura S, et al. Increased phospholipase D2 activity during hypoxia-induced death of PC12 cells: its possible anti-apoptotic role. Neurol Rep. 2000;16:3647–50.

    Google Scholar 

  16. Ghim J, Moon JS, Lee CS, Lee J, Song P, Lee A. Endothelial deletion of phospholipase D2 reduces hypoxic response and pathological angiogenesis. Arterioscler Thromb Vasc Biol. 2014;34:1697–703.

    Article  CAS  PubMed  Google Scholar 

  17. Oshimoto H, Okamura S, Yoshida M, Mori M. Increased activity and expression of phospholipase D2 in human colorectal cancer. Oncol Res. 2003;14:31–7.

    Article  CAS  PubMed  Google Scholar 

  18. Saito M, Iwadate M, Higashimoto M, Ono K. Expression of phospholipase D2 in human colorectal carcinoma. Oncol Rep. 2007;18:1329–34.

    CAS  PubMed  Google Scholar 

  19. Yamada Y, Hamajima N, Kato T, Iwata H. Association of a polymorphism of the phospholipase D2 gene with the prevalence of colorectal cancer. J Mol Med. 2003;81:126–31.

    Article  CAS  PubMed  Google Scholar 

  20. Wu XY, Fu ZX, Wang XH, et al. Identification of differential proteins in colon cancer SW480 cells with HIF1-alpha silence by proteome analysis. Neoplasma. 2010;57:299–305.

    Article  CAS  PubMed  Google Scholar 

  21. Maoxi L, Kunli D, Zhongxue F, Shouru Z, Xingye W. Hypoxia-inducible factor 1-alpha up-regulates the expression of phospholipase D2 in colon cancer cells under hypoxic conditions. Med Oncol. 2015;32:394.

    Article  Google Scholar 

  22. Zhang S, Liu B, Zhang B, Fan Z. The effect of survivin expression on the apoptosis and proliferation of hypoxic human pulmonary arterial smooth muscle cells. Zhonghua jiehe he huxi zazi. 2015;38:45–9.

    Google Scholar 

  23. Wu X, Zhongxue F, Wang X. Effect of hypoxia-inducible factor 1-α on surviving in colorectal cancer. Mol Med Rep. 2010;3:409–15.

    CAS  PubMed  Google Scholar 

  24. K.J.Oh, S.C. Lee, H.j. Choi, D.Y.Oh, S.C. Kim, D.S. Min, J.M. Kim, K.S. Lee, J.S. Han. Role of phospholipase D2 in anti-apoptotic signaling through increased expression of Bcl2 and Bcl-xL.J. Cell. Biochem. 2007.

  25. Song H, Han l-Y, Kim Y, Kim Young H, Cho l-W, et al. The NADPH oxidase inhibitor DPI can abolish hypoxia-induced apoptosis of human kidney proximal tubular epithelial cells through Bcl2 up-regulation via ERK activation without ROS reduction. Life Sci. 2015;126:69–75.

    Article  CAS  PubMed  Google Scholar 

  26. Vivanco L, Sawyers C. The phosphatidylinositol 3-Kinase-AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.

    Article  CAS  PubMed  Google Scholar 

  27. Momoko YAMADA, Banno Y, Yoh TAKUWA, Masahiro KODA, Yoshinori NOZAWA. Overexpression of phospholipase D prevents actinomycin D-induced apoptosis through potentiation of phosphoinositide 3-kinase signaling pathway in Chinese-hamster ovary cells. Biochem J. 2004;378:649–56.

    Article  Google Scholar 

  28. Yuhong C, Vanessa R, Foster DA. Alternative phospholipase D/mTOR survival signal in human breast cancer cells. Oncogene. 2005;24:672–9.

    Article  Google Scholar 

  29. Wittekind C, Compton CC, Greene FL, Sobin LH. TNM residual tumor classification revised. Cancer. 2002;94:2511–6.

    Article  PubMed  Google Scholar 

  30. Yu C, Zhang Z, Liao W, Zhao X, Liu L, Wu Y, et al. The tumor-suppressor gene NKX2-8 suppresses bladder cancer proliferation through upregulation of FOXO3a and inhibition of the MEK/ERK signaling pathway. Carcinogenesis. 2012;33:678–86.

    Article  CAS  PubMed  Google Scholar 

  31. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta DeltaC(T)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  32. Oh JW, Kim EY, koo BS, Lee HB, Kim KS, Han JS. Der f 2 activates phospholipase D in human T lymphocytes from Dermatophagoides farinae specific allergic individuals: involvement of protein kinase C-α. Exp Mol Med. 2004;36:486–92.

    Article  CAS  PubMed  Google Scholar 

  33. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.

    Article  CAS  PubMed  Google Scholar 

  34. Thomas P. Mathews, Salisha Hill,Kristie L. Rose,Pavlina T. Ivanova,Craig W. Lindsley and H. Alex Brown, Human phospholipase D activity transiently regulates pyrimidine biosynthesis in malignant gliomas. ACS Chemical Biology. 2015. PMID:25646564.

  35. Kang DW, Min DS. Positive feedback regulation between phospholipase D and Wnt signaling promotes Wnt-driven anchorage-independent growth of colorectal cancer cells. Plos One. 2010;5:2109.

    Article  Google Scholar 

  36. Kang DW, Choi KY, Mindo S. Phospholipase D meets Wnt signaling a new target for cancer therapy. Cancer Res. 2011;71:293–7.

    Article  CAS  PubMed  Google Scholar 

  37. Jones D, Morgan C, Cockcroft S. Phospholipase D and membrane traffic. Potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim Biophys Acta. 1999;1439:229–44.

    Article  CAS  PubMed  Google Scholar 

  38. Su W, Chen Q, Frohman M. Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol. 2009;5:1477–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee YH, Bae YS. Phospholipase D2 downregulation reduces cellular senescence through a reactive oxygen species P53-P21 pathway. FEBS Lett. 2014;588:3251–8.

    Article  CAS  PubMed  Google Scholar 

  40. Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem. 2014;289:22557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saito M, Manabu I, Masahi H, Koichiro O, et al. Expression of phospholipase D2 in human colorectal carcinoma. Oncol Rep. 2007;18:1329–34.

    CAS  PubMed  Google Scholar 

  42. Liu L, Li F, Cardeui JA, et al. Rapamycin inhibits cell mobility by suppression of mTOR-mediated S6K1 and 4E-BPI pathways. Oncogene. 2006;25:7029–40.

    Article  CAS  PubMed  Google Scholar 

  43. Wang Q, Zhou Y, Evers BM. Pkc delta-mediated regulation of FLIP expression in human colon cancer cells. Int J Cancer. 2006;118:326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin J, Guan Z, Wang C, et al. Inhibitor of differentiation 1 contributes to head and neck squamous cell carcinoma survival via the NF-kappaB/survivin and phosphoionositide 3-kinase/Akt signaling pathways. Clin Cancer Res. 2010;16:77–87.

    Article  CAS  PubMed  Google Scholar 

  45. Li W, Wang H, Kuang CY, et al. An essential role for the Id1/PI3K/Akt/NFκB/surviving signalling pathway in promoting the proliferation of endothelial progenitor cells in vitro. Mol Cell Biochem. 2012;363:135–45.

    Article  CAS  PubMed  Google Scholar 

  46. Yang X-C, Wang X, Luo L, Dong DH, Yu QC, Wang XS, et al. RNA interference suppression of A100A4 reduces the growth and metastatic phenotype of human renal cancer cells via NF-κB dependent MMP-2 and bcl2 pathway. Eur Rev Med Pharmacol Sci. 2013;17:1669–80.

    PubMed  Google Scholar 

  47. Mi Hee P, Bong-Hyun A, Yong-Kil H, Do Sik M. Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase a/NF-κB/SP1-mdiated signaling pathways. Carcinogenesis. 2009;30:356–65.

    Google Scholar 

  48. Dong Woo K, Do Sik M. Platelet derived growth factor increases phospholipase D1 but not phospholipase D2 expression via NFκB signaling pathway and enhances invasion of breast cancer cells. Cancer Lett. 2010;294:125–33.

    Article  Google Scholar 

  49. Thomas RP, Farrow BJ, Kim S, May MJ, Hellmich MR, Evers BM. Selective targeting of the nuclear factor-kappaB pathway enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated pancreatic cancer cell death. Surgery. 2002;132:127–34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China, no. 81201916. The authors gratefully thank Laboratory Research Center of the First Affiliated Hospital of Chongqing Medical University for providing equipment support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongxue Fu or Xingye Wu.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Fu, Z., Wu, X. et al. Inhibition of phospholipaseD2 increases hypoxia-induced human colon cancer cell apoptosis through inactivating of the PI3K/AKT signaling pathway. Tumor Biol. 37, 6155–6168 (2016). https://doi.org/10.1007/s13277-015-4348-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4348-4

Keywords

Navigation