Skip to main content

Advertisement

Log in

Enhanced SLC34A2 in breast cancer stem cell-like cells induces chemotherapeutic resistance to doxorubicin via SLC34A2-Bmi1-ABCC5 signaling

  • Original Article
  • Published:
Tumor Biology

Abstracts

Even though early detection methods and treatment options are greatly improved, chemoresistance is still a tremendous challenge for breast cancer therapy. Breast cancer stem cells (BCSCs) represent a subpopulation that is central to chemoresistance. We aim to investigate the relationship between SLC34A2 and chemoresistance in BCSCs and identify the underlying mechanisms by which SLC34A2 regulates chemoresistance in BCSCs. Fluorescence Activated Cell Sorting (FACS) analysis showed the presence of a variable fraction of CD44+CD24 cells in 25 out of 25 breast cancer samples. We cultured primary breast cancer sample cells and breast cancer cell line cells to induce sphere formation in serum-free medium. Following sorting of CD44+CD24 cells from spheres, we showed that CD44+CD24 cells displayed stem cell-like features and were resistant to chemotherapy drug doxorubicin. Significantly, enhanced SLC34A2 expression correlated with chemoresponse and survival of breast cancer patients. We subsequently indicated that increased SLC34A2 expression in BCSCs directly contributed to their chemoresistance by a series of in vitro and in vivo experiments. Furthermore, we demonstrated that SLC34A2 induced chemoresistance in BCSCs via SLC34A2-Bmi1-ABCC5 signaling. Finally, we showed that ABCC5 was a direct transcriptional target of Bmi1 by chromatin immunoprecipitation (ChIP). In conclusion, our work indicated that decreased SLC34A2 expression sensitized BCSCs to doxorubicin via SLC34A2-Bmi1-ABCC5 signaling and shed new light on understanding the mechanism of chemoresistance in BCSCs. This study not only bridges the missing link between stem cell-related transcription factor (Bmi1) and ABC transporter (ABCC5) but also contributes to development of potential therapeutics against breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McDermott SP, Wicha MS. Targeting breast cancer stem cells. Mol Oncol. 2010;4(5):404–19. doi:10.1016/j.molonc.2010.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu H, Bai L, Collins JF, Ghishan FK. Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na+-Pi) transporter (SLC34A2). Genomics. 1999;62(2):281–4. doi:10.1006/geno.1999.6009.

    Article  CAS  PubMed  Google Scholar 

  3. Rangel LB, Sherman-Baust CA, Wernyj RP, Schwartz DR, Cho KR, Morin PJ. Characterization of novel human ovarian cancer-specific transcripts (HOSTs) identified by serial analysis of gene expression. Oncogene. 2003;22(46):7225–32. doi:10.1038/sj.onc.1207008.

    Article  CAS  PubMed  Google Scholar 

  4. Jarzab B, Wiench M, Fujarewicz K, Simek K, Jarzab M, Oczko-Wojciechowska M, et al. Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Res. 2005;65(4):1587–97. doi:10.1158/0008-5472.CAN-04-3078.

    Article  CAS  PubMed  Google Scholar 

  5. Virkki LV, Biber J, Murer H, Forster IC. Phosphate transporters: a tale of two solute carrier families. Am J Physiol Ren Physiol. 2007;293(3):F643–54. doi:10.1152/ajprenal.00228.2007.

    Article  CAS  Google Scholar 

  6. Sabbagh Y, O’Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, et al. Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol: JASN. 2009;20(11):2348–58. doi:10.1681/ASN.2009050559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci U S A. 1998;95(24):14564–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin K, Rubinfeld B, Zhang C, Firestein R, Harstad E, Roth L, et al. Preclinical development of an anti-NaPi2b (SLC34A2) antibody drug conjugate as a therapeutic for non-small cell lung and ovarian cancers. Clin Cancer Res. 2015. doi:10.1158/1078-0432.CCR-14-3383.

    Google Scholar 

  9. Hong SH, Minai-Tehrani A, Chang SH, Jiang HL, Lee S, Lee AY, et al. Knockdown of the sodium-dependent phosphate co-transporter 2b (NPT2b) suppresses lung tumorigenesis. PLoS One. 2013;8(10), e77121. doi:10.1371/journal.pone.0077121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu S, Wicha MS. Targeting breast cancer stem cells. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(25):4006–12. doi:10.1200/JCO.2009.27.5388.

    Article  CAS  Google Scholar 

  11. Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A. 2009;106(38):16281–6. doi:10.1073/pnas.0905653106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8. doi:10.1038/367645a0.

    Article  CAS  PubMed  Google Scholar 

  13. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65(13):5506–11. doi:10.1158/0008-5472.CAN-05-0626.

    Article  CAS  PubMed  Google Scholar 

  14. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7. doi:10.1158/0008-5472.CAN-06-2030.

    Article  CAS  PubMed  Google Scholar 

  15. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5. doi:10.1038/nature05384.

    Article  CAS  PubMed  Google Scholar 

  16. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8. doi:10.1073/pnas.0530291100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN. Hypoxia inducible factors in cancer stem cells. Br J Cancer. 2010;102(5):789–95. doi:10.1038/sj.bjc.6605551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9. doi:10.1093/jnci/djn123.

    Article  CAS  PubMed  Google Scholar 

  19. Tang DG. Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 2012;22(3):457–72. doi:10.1038/cr.2012.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Visvader JE. Cells of origin in cancer. Nature. 2011;469(7330):314–22. doi:10.1038/nature09781.

    Article  CAS  PubMed  Google Scholar 

  21. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509(7500):371–5. doi:10.1038/nature13173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mashima H, Zhang YQ, Tajima T, Takeda J, Kojima I. Na-Pi cotransporter expressed during the differentiation of pancreatic AR42J cells. Diabetes. 2001;50 Suppl 1:S39.

    Article  CAS  PubMed  Google Scholar 

  23. Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut JA, et al. Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res. 2000;60(16):4403–11.

    CAS  PubMed  Google Scholar 

  24. Guzman ML, Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilvassy SJ, et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci U S A. 2002;99(25):16220–5. doi:10.1073/pnas.252462599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10. doi:10.1038/nature05372.

    Article  PubMed  Google Scholar 

  26. Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer. 2010;10(2):147–56. doi:10.1038/nrc2789.

    Article  CAS  PubMed  Google Scholar 

  27. Paranjape AN, Balaji SA, Mandal T, Krushik EV, Nagaraj P, Mukherjee G, et al. Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog. BMC Cancer. 2014;14:785. doi:10.1186/1471-2407-14-785.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nor C, Zhang Z, Warner KA, Bernardi L, Visioli F, Helman JI, et al. Cisplatin induces Bmi-1 and enhances the stem cell fraction in head and neck cancer. Neoplasia. 2014;16(2):137–46. doi:10.1593/neo.131744.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009;106(33):13820–5. doi:10.1073/pnas.0905718106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cortes-Dericks L, Carboni GL, Schmid RA, Karoubi G. Putative cancer stem cells in malignant pleural mesothelioma show resistance to cisplatin and pemetrexed. Int J Oncol. 2010;37(2):437–44.

    CAS  PubMed  Google Scholar 

  31. Liu Y, Kuick R, Hanash S, Richardson B. DNA methylation inhibition increases T cell KIR expression through effects on both promoter methylation and transcription factors. Clin Immunol. 2009;130(2):213–24. doi:10.1016/j.clim.2008.08.009.

    Article  CAS  PubMed  Google Scholar 

  32. Kaushal GP, Liu L, Kaushal V, Hong X, Melnyk O, Seth R, et al. Regulation of caspase-3 and -9 activation in oxidant stress to RTE by forkhead transcription factors, Bcl-2 proteins, and MAP kinases. Am J Physiol Ren Physiol. 2004;287(6):F1258–68. doi:10.1152/ajprenal.00391.2003.

    Article  CAS  Google Scholar 

  33. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185–229. doi:10.1124/pr.56.2.6.

    Article  CAS  PubMed  Google Scholar 

  34. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell. 2004;118(4):409–18. doi:10.1016/j.cell.2004.08.005.

    Article  CAS  PubMed  Google Scholar 

  35. Proctor E, Waghray M, Lee CJ, Heidt DG, Yalamanchili M, Li C, et al. Bmi1 enhances tumorigenicity and cancer stem cell function in pancreatic adenocarcinoma. PLoS One. 2013;8(2), e55820. doi:10.1371/journal.pone.0055820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu Y, Yu F, Jiao Y, Feng J, Tang W, Yao H, et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res. 2011;17(22):7105–15. doi:10.1158/1078-0432.CCR-11-0071.

    Article  CAS  PubMed  Google Scholar 

  37. Yin J, Zheng G, Jia X, Zhang Z, Zhang W, Song Y, et al. A Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells. PLoS One. 2013;8(9), e73268. doi:10.1371/journal.pone.0073268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Walsh N, Kennedy S, Larkin AM, Tryfonopoulos D, Eustace AJ, Mahgoub T, et al. Membrane transport proteins in human melanoma: associations with tumour aggressiveness and metastasis. Br J Cancer. 2010;102(7):1157–62. doi:10.1038/sj.bjc.6605590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 2005;65(10):4320–33. doi:10.1158/0008-5472.CAN-04-3327.

    Article  CAS  PubMed  Google Scholar 

  40. Saxena M, Stephens MA, Pathak H, Rangarajan A. Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis. 2011;2, e179. doi:10.1038/cddis.2011.61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the research grants of the National Natural Science Foundation of China (Grant No. 81402200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun He.

Ethics declarations

Conflicts of interest

None

Additional information

Guanqun Ge and Can Zhou contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Information

(DOCX 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, G., Zhou, C., Ren, Y. et al. Enhanced SLC34A2 in breast cancer stem cell-like cells induces chemotherapeutic resistance to doxorubicin via SLC34A2-Bmi1-ABCC5 signaling. Tumor Biol. 37, 5049–5062 (2016). https://doi.org/10.1007/s13277-015-4226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4226-0

Keywords

Navigation