Skip to main content
Log in

In situ dendritic cell vaccination for the treatment of glioma and literature review

  • Original Article
  • Published:
Tumor Biology

Abstract

Glioma is one of the greatest threats to human health, and invasive growth of glioma is its major cause of death. Inhibiting or blocking angiogenesis can effectively inhibit tumor growth and metastasis or dramatically reduce the size of the original lesion. Therefore, anti-angiogenic therapy has currently become the most promising treatment strategy for glioma. Although dendritic cells (DCs) used in DC-based immunotherapy are loaded with tumor-associated antigens, the anti-tumor immune response is effectively stimulated in cytotoxic specific T lymphocytes (CTLs), thereby achieving targeted killing of tumor cells without harming surrounding normal cells. This makes it a highly promising new form of therapy. This article reviews the existing evidence regarding in situ DC vaccination for the treatment of glioma and puts forward hypotheses regarding patient, tumor, and technical factors and warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  2. Kerbel RS. A cancer therapy resistant to resistance. Nature. 1997;390(27):335–6.

    Article  CAS  PubMed  Google Scholar 

  3. Gille J. Antiangiogenic cancer therapies get their act together: current developments and future prospects of growth factor- and growth factor receptor-targeted approaches. Exp Dermatol. 2006;15(3):175–86.

    Article  CAS  PubMed  Google Scholar 

  4. Juratli TA, Schackert G, Krex D. Current status of local therapy in malignant gliomas—a clinical review of three selected approaches. Pharmacol Ther. 2013;139(3):341–58.

    Article  CAS  PubMed  Google Scholar 

  5. Fan M, Liu Y, Xia F, Wang Z, Huang Y, Li J, et al. Increased expression of EphA2 and E-N cadherin switch in primary hepatocellular carcinoma. Tumori. 2013;99(6):689–96.

    PubMed  Google Scholar 

  6. Russo S, Incerti M, Tognolini M, Castelli R, Pala D, Hassan-Mohamed I, et al. Synthesis and structure-activity relationships of amino acid conjugates of cholanic acid as antagonists of the EphA2 receptor. Molecules. 2013;18(10):13043–60.

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Yuan B, Zheng Z, Liu Z, Wang S, Liu YA. Novel vaccine containing EphA2 epitope and LIGHT plasmid induces robust cellular immunity against glioma U251 cells. Cell Immunol. 2011;272(1):102–6.

    Article  CAS  PubMed  Google Scholar 

  8. Alho I, Costa L, Bicho M, Coelho C. Low molecular weight protein tyrosine phosphatase isoforms regulate breast cancer cells migration through a RhoA dependent mechanism. PLoS One. 2013;8(9):e76307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Strimpakos A, Pentheroudakis G, Kotoula V, De Roock W, Kouvatseas G. The prognostic role of ephrin A2 and endothelial growth factor receptor pathway mediators in patients with advanced colorectal cancer treated with cetuximab. Clin Colorectal Cancer. 2013;12(4):267–74.

    Article  CAS  PubMed  Google Scholar 

  10. Hegde M, Corder A, Chow KK, Mukherjee M, Ashoori A, Kew Y. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther. 2013;21(11):2087–101.

    Article  CAS  PubMed Central  Google Scholar 

  11. Mantripragada K, Khurshid H. Targeting genomic alterations in squamous cell lung cancer. Front Oncol. 2013;3(8):195.

    PubMed  PubMed Central  Google Scholar 

  12. Lee HY, Mohammed KA, Goldberg EP, Nasreen N. Arginine-conjugated albumin microspheres inhibits proliferation and migration in lung cancer cells. Am J Cancer Res. 2013;3(3):266–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu XS, Sun W, Ge CY, Zhang WZ, Fan YZ. Contribution of the PI3K/MMPs/Ln-5γ2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. Int J Oncol. 2013;42(6):2103–15.

    CAS  PubMed  Google Scholar 

  14. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ. Immunotoxin therapy of cancer. Nat Rev Cancer. 2006;6(7):559–65.

    Article  CAS  PubMed  Google Scholar 

  15. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.

    Article  CAS  PubMed  Google Scholar 

  16. Howard KA, Rahbek UL, Liu X. RNA interference in vitro and in vivo using a novel Chitosan/siRNA nanoparticle system. Mol Ther. 2006;14(4):476–84.

    Article  CAS  PubMed  Google Scholar 

  17. Laperchia C, Allegra Mascaro AL, Sacconi L, Andrioli A, Matt A, De Franceschi L, et al. Two-photon microscopy imaging of thy1GFP-M transgenic mice: a novel animal model to investigate brain dendritic cell subsets in vivo. PLoS One. 2013;8(2):e56144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li M, Wang B, Wu Z, Zhang J, Shi X, Han S. A novel recombinant protein of ephrinA1-PE38/GM-CSF activate dendritic cells vaccine in rats with glioma. Tumor Biol. 2015. doi:10.1007/s13277-015-3217-5.

    Google Scholar 

  19. Wang X, Zhao HY, Zhang FC, Sun Y, Xiong ZY, Jiang XB. Dendritic cell-based vaccine for the treatment of malignant glioma: a systematic review. Cancer Invest. 2014;32(9):451–7.

    Article  CAS  PubMed  Google Scholar 

  20. Eyrich M, Rachor J, Schreiber SC, Wölfl M, Schlegel PG. Dendritic cell vaccination in pediatric gliomas: lessons learnt and future perspectives. Front Pediatr 2013;10;1:12.

  21. Li M, Wang B, Wu Z, Zhang J, Shi X, Han S. Treatment of glioma rat models using EphrinA1-PE38/GM-CSF chitosan nanoparticles by in-situ activation of dendritic cells. Tumour Biol (2015).

  22. Kyte JA, Mu L, Aamdal S, Kvalheim G. Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther. 2006;13(10):905–18.

    Article  CAS  PubMed  Google Scholar 

  23. Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol. 2011;29(3):330–6.

    Article  CAS  PubMed  Google Scholar 

  24. Holtl L, Rieser C, Papesh C, Ramoner R, Herold M, Klocker H, et al. Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol. 1999;161(3):777–82.

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Su X, Zhang P, Liang J, Wei H, Wan M, et al. Recombinant heat shock protein 65 carrying PADRE and HBV epitopes activates dendritic cells and elicits HBV-specific CTL responses. Vaccine. 2011;29(12):2328–35.

    Article  CAS  PubMed  Google Scholar 

  26. Debenedette MA, Calderhead DM, Tcherepanova IY, Nicolette CA, Healey DG. Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J Immunother. 2011;34(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  27. Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, et al. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci U S A. 2000;97(6):2715–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, et al. STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. Immunity. 2010;33(5):699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Zhang W, Chan T, Saxena A, Xiang J. Engineered fusion hybrid vaccine of IL-4 gene-modified myeloma and relative mature dendritic cells enhances antitumor immunity. Leuk Res. 2002;26(8):757–63.

    Article  CAS  PubMed  Google Scholar 

  30. Wertel I, Bednarek W, Stachowicz N, Rogala E, Nowicka A, Kotarski J. Phenotype of dendritic cells generated from peripheral blood monocytes of patients with ovarian cancer. Transplant Proc. 2010;42(8):3301–5.

    Article  CAS  PubMed  Google Scholar 

  31. den Brok MH, Sutmuller RP, Nierkens S, Bennink EJ, Frielink C. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer. 2006;95(7):896–905.

    Article  Google Scholar 

  32. Martins A, Han J, Kim SO. The multifaceted effects of granulocyte colony-stimulating factor in immunomodulation and potential roles in intestinal immune homeostasis. IUBMB Life. 2010;62(8):611–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee JH, Roh MS, Lee YK, Kim MK, Han JY. Oncolytic and immunostimulatory efficacy of a targeted oncolytic poxvirus expressing human GM-CSF following intravenous administration in a rabbit tumor model. Cancer Gene Ther. 2010;17(2):73–9.

    Article  CAS  PubMed  Google Scholar 

  34. Si T, Guo Z, Hao X. Combined cryoablation and GM-CSF treatment for metastatic hormone refractory prostate cancer. J Immunother. 2009;32(1):86–91.

    Article  PubMed  Google Scholar 

  35. Ward JE, Mcneel DG. GVAX: an allogeneic, whole-cell, GM-CSF-secreting cellular immunotherapy for the treatment of prostate cancer. Expert Opin Biol Ther. 2007;7(12):1893–902.

    Article  CAS  PubMed  Google Scholar 

  36. Nemunaitis J. Vaccines in cancer: GVAX, a GM-CSF gene vaccine. Expert Rev Vaccines. 2005;4(3):259–74.

    Article  CAS  PubMed  Google Scholar 

  37. Harzstark AL, Small EJ. Sipuleucel-T for the treatment of prostate cancer. Drugs Today (Barc). 2008;44(4):271–8.

    Article  CAS  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Han, S. & Shi, X. In situ dendritic cell vaccination for the treatment of glioma and literature review. Tumor Biol. 37, 1797–1801 (2016). https://doi.org/10.1007/s13277-015-3958-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3958-1

Keywords

Navigation