Skip to main content

Advertisement

Log in

The comparison between dual inhibition of mTOR with MAPK and PI3K signaling pathways in KRAS mutant NSCLC cell lines

  • Research Article
  • Published:
Tumor Biology

Abstract

KRAS mutations are found in 15–25 % of patients with lung adenocarcinoma, and they lead to constitutive activation of KRAS signaling pathway that results in sustained cell proliferation. Currently, there are no direct anti-KRAS therapies available. Therefore, it is rational to target the downstream molecules of KRAS signaling pathway, which are mitogen-activated protein kinase (MAPK) signaling pathway (RAF-MEK-ERK) and PI3K pathway (PI3K-AKT-mTOR). Here, we examined the inhibition of both these pathways alone and in combination and analyzed the anti-proliferative and apoptotic events in KRAS mutant NSCLC cell lines, A549 and Calu-1. Cytotoxicity was determined by MTT assay after the cells were treated with LY294002 (PI3K inhibitor), U0126 (MEK inhibitor), and RAD001 (mTOR inhibitor) for 24 and 48 h. The expression levels of p-ERK, ERK, AKT, p-AKT, p53, cyclinD1, c-myc, p27kip1, BAX, BIM, and GAPDH were detected by western blot after 6 and 24 h treatment. Although PI3K/mTOR inhibition is more effective in cytotoxicity in A549 and Calu-1 cells, MEK/mTOR inhibition markedly decreases cell proliferation protein marker expressions. Our data show that combined targeting of MEK and PI3K-AKT with mTOR is a better option than single agents alone for KRAS mutant NSCLC, thus opening the possibility of a beneficial treatment strategy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NSCLC:

Non-small cell lung cancer

SCLC:

Small cell lung cancer

PIP3:

Phosphatidylinositol 3, 4, 5-triphosphate

PIP2:

Phosphatidylinositol 4, 5-diphosphate

mTORC1:

mTOR1 complex

TSC2:

Tuberous sclerosis protein 2

MAPK:

Mitogen-activated protein kinase

MEK1/2:

MAP-ERK kinases 1 and 2

BEZ235:

Dual PI3K and mTOR inhibitor

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  2. Beasley MB, Brambilla E, Travis WD. The 2004 world health organization classification of lung tumors. Semin Roentgenol. 2005;40:90–7.

    Article  PubMed  Google Scholar 

  3. A genomics-based classification of human lung tumors. Sci Transl Med 5: 209ra153. 2013.

  4. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia. 2004;18:189–218.

    Article  CAS  PubMed  Google Scholar 

  5. Diaz-Flores E, Shannon K. Targeting oncogenic Ras. Genes Dev. 2007;21:1989–92.

    Article  CAS  PubMed  Google Scholar 

  6. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11:761–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mascaux C, Iannino N, Martin B, Paesmans M, Berghmans T, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92:131–9.

    Article  CAS  PubMed  Google Scholar 

  8. Sekido Y, Fong KM, Minna JD. Molecular genetics of lung cancer. Annu Rev Med. 2003;54:73–87.

    Article  CAS  PubMed  Google Scholar 

  9. Sable CL, Filippa N, Filloux C, Hemmings BA, Van Obberghen E. Involvement of the pleckstrin homology domain in the insulin-stimulated activation of protein kinase B. J Biol Chem. 1998;273:29600–6.

    Article  CAS  PubMed  Google Scholar 

  10. Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2003;2:339–45.

    Article  CAS  PubMed  Google Scholar 

  11. Testa JR, Bellacosa A. AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A. 2001;98:10983–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bondar VM, Sweeney-Gotsch B, Andreeff M, Mills GB, Mcconkey DJ. Inhibition of the phosphatidylinositol 3'-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther. 2002;1:989–97.

    CAS  PubMed  Google Scholar 

  13. Tsurutani J, Fukuoka J, Tsurutani H, Shih JH, Hewitt SM, et al. Evaluation of two phosphorylation sites improves the prognostic significance of Akt activation in non-small-cell lung cancer tumors. J Clin Oncol. 2006;24:306–14.

    Article  CAS  PubMed  Google Scholar 

  14. Boulay A, Lane HA. The mammalian target of rapamycin kinase and tumor growth inhibition. Recent Results Cancer Res Fortschritte der Krebsforschung Progres dans les Recherches sur le Cancer. 2007;172:99–124.

    CAS  PubMed  Google Scholar 

  15. O’donnell A, Faivre S, Burris 3rd HA, Rea D, Papadimitrakopoulou V, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26:1588–95.

    Article  PubMed  Google Scholar 

  16. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26:1603–10.

    Article  CAS  PubMed  Google Scholar 

  17. O’reilly KE, Rojo F, She QB, Solit D, Mills GB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, et al. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 2011;1:248–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mccubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773:1263–84.

    Article  CAS  PubMed  Google Scholar 

  20. Papin C, Eychene A, Brunet A, Pages G, Pouyssegur J, et al. B-Raf protein isoforms interact with and phosphorylate Mek-1 on serine residues 218 and 222. Oncogene. 1995;10:1647–51.

    CAS  PubMed  Google Scholar 

  21. Adjei AA. Signal transduction pathway targets for anticancer drug discovery. Curr Pharm Des. 2000;6:361–78.

    Article  CAS  PubMed  Google Scholar 

  22. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998;273:18623–32.

    Article  CAS  PubMed  Google Scholar 

  23. Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta. 2007;1773:1213–26.

    Article  CAS  PubMed  Google Scholar 

  24. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118:3065–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu CF, Liu ZX, Cantley LG. ERK negatively regulates the epidermal growth factor-mediated interaction of Gab1 and the phosphatidylinositol 3-kinase. J Biol Chem. 2002;277:19382–8.

    Article  CAS  PubMed  Google Scholar 

  26. Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999;286:1741–4.

    Article  CAS  PubMed  Google Scholar 

  27. Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, et al. Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem. 2000;275:27354–9.

    CAS  PubMed  Google Scholar 

  28. Carriere A, Romeo Y, Acosta-Jaquez HA, Moreau J, Bonneil E, et al. ERK1/2 phosphorylate raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J Biol Chem. 2011;286:567–77.

    Article  CAS  PubMed  Google Scholar 

  29. Iida S, Miki Y, Ono K, Akahira J, Nakamura Y, et al. Synergistic anti-tumor effects of RAD001 with MEK inhibitors in neuroendocrine tumors: a potential mechanism of therapeutic limitation of mTOR inhibitor. Mol Cell Endocrinol. 2012;350:99–106.

    Article  CAS  PubMed  Google Scholar 

  30. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene. 2007;26:1932–40.

    Article  CAS  PubMed  Google Scholar 

  31. Chen X, Zhao M, Hao M, Sun X, Wang J, et al. Dual inhibition of PI3K and mTOR mitigates compensatory AKT activation and improves tamoxifen response in breast cancer. Mol Cancer Res. 2013;11:1269–78.

    Article  CAS  PubMed  Google Scholar 

  32. Ishibe S, Haydu JE, Togawa A, Marlier A, Cantley LG. Cell confluence regulates hepatocyte growth factor-stimulated cell morphogenesis in a beta-catenin-dependent manner. Mol Cell Biol. 2006;26:9232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Swat A, Dolado I, Rojas JM, Nebreda AR. Cell density-dependent inhibition of epidermal growth factor receptor signaling by p38alpha mitogen-activated protein kinase via Sprouty2 downregulation. Mol Cell Biol. 2009;29:3332–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao J, Zhao Y, Lv Y, Chen Y, Wei B, et al. Mirk/Dyrk1B mediates G0/G1 to S phase cell cycle progression and cell survival involving MAPK/ERK signaling in human cancer cells. Cancer Cell Int. 2013;13:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ko JC, Wang YT, Yang JL. Dual and opposing roles of ERK in regulating G(1) and S-G(2)/M delays in A549 cells caused by hyperoxia. Exp Cell Res. 2004;297:472–83.

    Article  CAS  PubMed  Google Scholar 

  36. Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009;27:2278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ji D, Zhang Z, Cheng L, Chang J, Wang S, et al. The combination of RAD001 and MK-2206 exerts synergistic cytotoxic effects against PTEN mutant gastric cancer cells: involvement of MAPK-dependent autophagic, but not apoptotic cell death pathway. PLoS One. 2014;9, e85116.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zito CR, Jilaveanu LB, Anagnostou V, Rimm D, Bepler G, et al. Multi-level targeting of the phosphatidylinositol-3-kinase pathway in non-small cell lung cancer cells. PLoS One. 2012;7, e31331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008;14:1351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qu Y, Wu X, Yin Y, Yang Y, Ma D, et al. Antitumor activity of selective MEK1/2 inhibitor AZD6244 in combination with PI3K/mTOR inhibitor BEZ235 in gefitinib-resistant NSCLC xenograft models. J Exp Clin Cancer Res CR. 2014;33:52.

    Article  PubMed  Google Scholar 

  41. Hata AN, Yeo A, Faber AC, Lifshits E, Chen Z, et al. Failure to induce apoptosis via BCL-2 family proteins underlies lack of efficacy of combined MEK and PI3K inhibitors for KRAS-mutant lung cancers. Cancer Res. 2014;74:3146–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ Mol Biol J Am Assoc Cancer Res. 2001;12:397–408.

    CAS  Google Scholar 

  43. Allan LA, Morrice N, Brady S, Magee G, Pathak S, et al. Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol. 2003;5:647–54.

    Article  CAS  PubMed  Google Scholar 

  44. Sahu RP, Batra S, Kandala PK, Brown TL, Srivastava SK. The role of K-ras gene mutation in TRAIL-induced apoptosis in pancreatic and lung cancer cell lines. Cancer Chemother Pharmacol. 2011;67:481–7.

    Article  CAS  PubMed  Google Scholar 

  45. Mirza AM, Gysin S, Malek N, Nakayama K, Roberts JM, et al. Cooperative regulation of the cell division cycle by the protein kinases RAF and AKT. Mol Cell Biol. 2004;24:10868–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gysin S, Lee SH, Dean NM, Mcmahon M. Pharmacologic inhibition of RAF→MEK→ERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kip1. Cancer Res. 2005;65:4870–80.

    Article  CAS  PubMed  Google Scholar 

  47. Ku BM, Jho EH, Bae YH, Sun JM, Ahn JS, et al. BYL719, a selective inhibitor of phosphoinositide 3-kinase alpha, enhances the effect of selumetinib (AZD6244, ARRY-142886) in KRAS-mutant non-small cell lung cancer. Investig New Drugs. 2014.

  48. Chen Y, Nowak I, Huang J, Keng PC, Sun H, et al. Erk/MAP kinase signaling pathway and neuroendocrine differentiation of non-small-cell lung cancer. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2014;9:50–8.

    CAS  Google Scholar 

  49. Haagensen EJ, Kyle S, Beale GS, Maxwell RJ, Newell DR. The synergistic interaction of MEK and PI3K inhibitors is modulated by mTOR inhibition. Br J Cancer. 2012;106:1386–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irem Dogan Turacli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogan Turacli, I., Ozkan, A.C. & Ekmekci, A. The comparison between dual inhibition of mTOR with MAPK and PI3K signaling pathways in KRAS mutant NSCLC cell lines. Tumor Biol. 36, 9339–9345 (2015). https://doi.org/10.1007/s13277-015-3671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3671-0

Keywords

Navigation