Skip to main content

Advertisement

Log in

Targeting increased copper levels in diethylnitrosamine induced hepatocellular carcinoma cells in rats by epigallocatechin-3-gallate

  • Research Article
  • Published:
Tumor Biology

Abstract

We have earlier elucidated a pathway for the anticancer action of plant polyphenolic compounds against malignant cells involving mobilisation of endogenous copper ions and the consequent prooxidant action. To further confirm our hypothesis in vivo, we induced hepatocellular carcinoma (HCC) in rats by diethylnitrosamine (DEN). We show that in such carcinoma cells, there is a progressive elevation in copper levels at various intervals after DEN administration. Concurrently with increasing copper levels, epigallocatechin-3-gallate (EGCG; a potent anticancer plant polyphenol found in green tea) mediated DNA breakage in malignant cells is also increased. The cell membrane permeable copper chelator neocuproine inhibited the EGCG-mediated cellular DNA degradation, whereas the membrane impermeable chelator bathocuproine was ineffective. Iron and zinc specific chelators desferoxamine mesylate and histidine, respectively, were also ineffective in inhibiting EGCG mediated DNA breakage. Through the use of specific scavengers, the mechanism of DNA breakage was determined to be mediated by reactive oxygen species. In summary, we provide an in vivo evidence of accumulating copper in hepatocellular carcinoma that is targeted by EGCG, leading to its anticancer role in a prooxidant manner. Our findings confirm a novel mechanism of anticancer activity of EGCG in particular and plant derived nutraceuticals in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roguljic A, Roth A, Kolari CK, Maricic Z. Iron, copper, and zinc liver tissue levels in patients with malignant lymphomas. Cancer. 1980;46:565–9.

    Article  CAS  PubMed  Google Scholar 

  2. Kuo HW, Chen SF, Wu CC, Chen DR, Lee JH. Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol Trace Elem Res. 2002;89:1–11.

    Article  CAS  PubMed  Google Scholar 

  3. Zuo XL, Chen JM, Zhou X, Li XZ, Mei GY. Levels of selenium, zinc, copper, and antioxidant enzyme activity in patients with leukemia. Biol Trace Elem Res. 2006;114:41–53.

    Article  CAS  PubMed  Google Scholar 

  4. Gupte A, Mumper RJ. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev. 2009;35:32–46.

    Article  CAS  PubMed  Google Scholar 

  5. Siddiqui IA, Adhami VM, Bharali DJ, Hafeez BB, Asim M, Khwaja SI, et al. Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res. 2009;69:1712–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khan N, Bharali DJ, Adhami VM, Siddiqui IA, Cui H, Shabana SM, et al. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis. 2014;35:415–23.

    Article  CAS  PubMed  Google Scholar 

  7. Hadi SM, Asad SF, Singh S, Ahmad A. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life. 2000;50:167–71.

    Article  CAS  PubMed  Google Scholar 

  8. Bryan SE. Metal ions in biological systems. New York: Marcel Dekker; 1979.

    Google Scholar 

  9. Kagawa TF, Geierstanger BH, Wang AH, Ho PS. Covalent modification of guanine bases in double-stranded DNA. The 1.2-A Z-DNA structure of d(CGCGCG) in the presence of CuCl2. J Biol Chem. 1991;266:20175–84.

    CAS  PubMed  Google Scholar 

  10. Hadi SM, Bhat SH, Azmi AS, Hanif S, Shamim U, Ullah MF. Oxidative breakage of cellular DNA by plant polyphenols: a putative mechanism for anticancer properties. Semin Cancer Biol. 2007;17:370–6.

    Article  CAS  PubMed  Google Scholar 

  11. Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol. 2001;2:589–98.

    Article  CAS  PubMed  Google Scholar 

  12. Ahmad A, Farhan Asad S, Singh S, Hadi SM. DNA breakage by resveratrol and Cu(II): reaction mechanism and bacteriophage inactivation. Cancer Lett. 2000;154:29–37.

    Article  CAS  PubMed  Google Scholar 

  13. Ahmad A, Syed FA, Singh S, Hadi SM. Prooxidant activity of resveratrol in the presence of copper ions: mutagenicity in plasmid DNA. Toxicol Lett. 2005;159:1–12.

    Article  CAS  PubMed  Google Scholar 

  14. Shamim U, Hanif S, Ullah MF, Azmi AS, Bhat SH, Hadi SM. Plant polyphenols mobilize nuclear copper in human peripheral lymphocytes leading to oxidatively generated DNA breakage: implications for an anticancer mechanism. Free Radic Res. 2008;42:764–72.

    Article  CAS  PubMed  Google Scholar 

  15. Ullah MF, Shamim U, Hanif S, Azmi AS, Hadi SM. Cellular DNA breakage by soy isoflavone genistein and its methylated structural analogue biochanin A. Mol Nutr Food Res. 2009;53:1376–85.

    Article  CAS  PubMed  Google Scholar 

  16. Hadi SM, Ullah MF, Azmi AS, Ahmad A, Shamim U, Zubair H, et al. Resveratrol mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for chemoprevention of cancer. Pharm Res. 2010;27:979–88.

    Article  CAS  PubMed  Google Scholar 

  17. Khan HY, Zubair H, Ullah MF, Ahmad A, Hadi SM. Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: implications for a cancer preventive mechanism. Biometals. 2011;24:1169–78.

    Article  CAS  PubMed  Google Scholar 

  18. Zubair H, Khan HY, Sohail A, Azim S, Ullah MF, Ahmad A, et al. Redox cycling of endogenous copper by thymoquinone leads to ROS-mediated DNA breakage and consequent cell death: putative anticancer mechanism of antioxidants. Cell Death Dis. 2013;4, e660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khan HY, Zubair H, Faisal M, Ullah MF, Farhan M, Sarkar FH, et al. Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action. Mol Nutr Food Res. 2014;58:437–46.

    Article  CAS  PubMed  Google Scholar 

  20. Ullah MF, Ahmad A, Zubair H, Khan HY, Wang Z, Sarkar FH, et al. Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species. Mol Nutr Food Res. 2011;55:553–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hassan I, Chibber S, Khan AA, Naseem I. Riboflavin ameliorates cisplatin induced toxicities under photoillumination. PLoS One. 2012;7, e36273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramanathan R, Das NP, Tan CH. Effects of gamma-linolenic acid, flavonoids, and vitamins on cytotoxicity and lipid peroxidation. Free Radic Biol Med. 1994;16:43–8.

    Article  CAS  PubMed  Google Scholar 

  23. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175:184–91.

    Article  CAS  PubMed  Google Scholar 

  24. Soresi M, Magliarisi C, Campagna P, Leto G, Bonfissuto G, Riili A, et al. Usefulness of alpha-fetoprotein in the diagnosis of hepatocellular carcinoma. Anticancer Res. 2003;23:1747–53.

    CAS  PubMed  Google Scholar 

  25. Bialecki ES, Di Bisceglie AM. Diagnosis of hepatocellular carcinoma. HPB (Oxford). 2005;7:26–34.

    Article  Google Scholar 

  26. Trivanovic D, Petkovic M, Stimac D. Low serum albumin levels and liver metastasis are powerful prognostic markers for survival in patients with carcinomas of unknown primary site. Cancer. 2007;109:2623–4.

    Article  PubMed  Google Scholar 

  27. Khan HY, Zubair H, Ullah MF, Ahmad A, Hadi SM. A prooxidant mechanism for the anticancer and chemopreventive properties of plant polyphenols. Curr Drug Targets. 2012;13:1738–49.

    Article  CAS  PubMed  Google Scholar 

  28. Quinlan GJ, Gutteridge JM. Oxygen radical damage to DNA by rifamycin SV and copper ions. Biochem Pharmacol. 1987;36:3629–33.

    Article  CAS  PubMed  Google Scholar 

  29. Smith C, Halliwell B, Aruoma OI. Protection by albumin against the pro-oxidant actions of phenolic dietary components. Food Chem Toxicol. 1992;30:483–9.

    Article  CAS  PubMed  Google Scholar 

  30. Xie H, Kang YJ. Role of copper in angiogenesis and its medicinal implications. Curr Med Chem. 2009;16:1304–14.

    Article  CAS  PubMed  Google Scholar 

  31. Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002;22:439–58.

    Article  CAS  PubMed  Google Scholar 

  32. Arner E, Forrest AR, Ehrlund A, Mejhert N, Itoh M, Kawaji H, et al. Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells. PLoS One. 2014;9, e80274.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Raffoul JJ, Kucuk O, Sarkar FH, Hillman GG. Dietary agents in cancer chemoprevention and treatment. J Oncol. 2012;2012:749310.

    PubMed  PubMed Central  Google Scholar 

  34. Chen ZP, Schell JB, Ho CT, Chen KY. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett. 1998;129:173–9.

    Article  CAS  PubMed  Google Scholar 

  35. Michels G, Watjen W, Weber N, Niering P, Chovolou Y, Kampkotter A, et al. Resveratrol induces apoptotic cell death in rat H4IIE hepatoma cells but necrosis in C6 glioma cells. Toxicology. 2006;225:173–82.

    Article  CAS  PubMed  Google Scholar 

  36. Tyagi A, Gu M, Takahata T, Frederick B, Agarwal C, Siriwardana S, et al. Resveratrol selectively induces DNA damage, independent of Smad4 expression, in its efficacy against human head and neck squamous cell carcinoma. Clin Cancer Res. 2011;17:5402–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Asensi M, Medina I, Ortega A, Carretero J, Bano MC, Obrador E, et al. Inhibition of cancer growth by resveratrol is related to its low bioavailability. Free Radic Biol Med. 2002;33:387–98.

    Article  CAS  PubMed  Google Scholar 

  38. Khan N, Mukhtar H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett. 2008;269:269–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Govindaraju M, Shekar HS, Sateesha SB, Vasudeva Raju P, Sambasiva Rao KR, Rao KSJ, et al. Copper interactions with DNA of chromatin and its role in neurodegenerative disorders. J Pharm Anal. 2013;3:354–9.

    Article  CAS  Google Scholar 

  40. Pryor WA. Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it has a rare combination of high electrophilicity, high thermochemical reactivity, and a mode of production that can occur near DNA. Free Radic Biol Med. 1988;4:219–23.

    Article  CAS  PubMed  Google Scholar 

  41. Mohan A, Narayanan S, Sethuraman S, Krishnan UM. Combinations of plant polyphenols & anti-cancer molecules: a novel treatment strategy for cancer chemotherapy. Anti Cancer Agents Med Chem. 2013;13:281–95.

    Article  CAS  Google Scholar 

  42. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Watson J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol. 2013;3:120144.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen D, Dou QP. New uses for old copper-binding drugs: converting the pro-angiogenic copper to a specific cancer cell death inducer. Expert Opin Ther Targets. 2008;12:739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Merlot AM, Kalinowski DS, Richardson DR. Novel chelators for cancer treatment: where are we now? Antioxid Redox Signal. 2013;18:973–1006.

    Article  CAS  PubMed  Google Scholar 

  46. Colotti G, Ilari A, Boffi A, Morea V. Metals and metal derivatives in medicine. Mini Rev Med Chem. 2013;13:211–21.

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Ahmad.

Additional information

Mohd Farhan and Asim Rizvi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhan, M., Rizvi, A., Naseem, I. et al. Targeting increased copper levels in diethylnitrosamine induced hepatocellular carcinoma cells in rats by epigallocatechin-3-gallate. Tumor Biol. 36, 8861–8867 (2015). https://doi.org/10.1007/s13277-015-3649-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3649-y

Keywords

Navigation