Skip to main content

Advertisement

Log in

KIF2A overexpression and its association with clinicopathologic characteristics and unfavorable prognosis in colorectal cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Kinesin superfamily protein 2A (KIF2A), an M‑type nonmotile microtubule depolymerase, has received attention for its role in carcinogenesis and prognostic value in several types of cancer. In this study, we evaluated the expression of KIF2A and its potential and robustness to predict clinical outcomes in colorectal cancer (CRC) patients. The messenger RNA (mRNA) expression of KIF2A was determined in 20 pairs of cancerous and adjacent nontumor tissues by real-time polymerase chain reaction. KIF2A immunohistochemistry was performed on tissue microarray (TMA), composed of 182 CRC and 179 matched adjacent nontumor tissues from surgery, 23 chronic colitis, 43 low-grade, and 18 high-grade intraepithelial neoplasias acquired through intestinal endoscopic biopsy. Univariate and multivariate Cox regression models were used to perform survival analyses. Both KIF2A mRNA and protein product exhibited CRC tissue-preferred expression, when compared with benign tissues. The high KIF2A expression was significantly correlated to TNM stage (P = 0.046) and tumor status (T) (P = 0.007). In univariate and multivariate analyses, high KIF2A expression showed a major prognostic value regarding 5-year survival. The influences of KIF2A expression on the survival were further proven by Kaplan–Meier survival analysis. This study demonstrated CRC tissue-preferred expression pattern of the KIF2A and suggested that high KIF2A expression might serve as an independent maker for poor prognosis in CRC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22:191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bosetti C, Bertuccio P, Malvezzi M, Levi F, Chatenoud L, Negri E, et al. Cancer mortality in europe, 2005–2009, and an overview of trends since 1980. Ann Oncol : official journal of the European Society for Medical Oncology / ESMO. 2013;24:2657–71.

    Article  CAS  Google Scholar 

  3. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin. 2009;59:366–78.

    Article  PubMed  Google Scholar 

  4. Center MM, Jemal A, Ward E. International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev : Publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2009;18:1688–94.

    Article  Google Scholar 

  5. Sideris M, Papagrigoriadis S. Molecular biomarkers and classification models in the evaluation of the prognosis of colorectal cancer. Anticancer Res. 2014;34:2061–8.

    CAS  PubMed  Google Scholar 

  6. Lee JK, Chan AT. Molecular prognostic and predictive markers in colorectal cancer: current status. Curr Colorectal Cancer Rep. 2011;7:136–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Markovic S, Antic J, Dimitrijevic I, Zogovic B, Bojic D, Svorcan P, et al. Microsatellite instability affecting the t17 repeats in intron 8 of hsp110, as well as five mononucleotide repeats in patients with colorectal carcinoma. Biomark Med. 2013;7:613–21.

    Article  CAS  PubMed  Google Scholar 

  8. Domingo E, Ramamoorthy R, Oukrif D, Rosmarin D, Presz M, Wang H, et al. Use of multivariate analysis to suggest a new molecular classification of colorectal cancer. J Pathol. 2013;229:441–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eklof V, Wikberg ML, Edin S, Dahlin AM, Jonsson BA, Oberg A, et al. The prognostic role of kras, braf, pik3ca and pten in colorectal cancer. Br J Cancer. 2013;108:2153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lochhead P, Kuchiba A, Imamura Y, Liao X, Yamauchi M, Nishihara R, et al. Microsatellite instability and braf mutation testing in colorectal cancer prognostication. J Natl Cancer Inst. 2013;105:1151–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li HY, Zhang Y, Cai JH, Bian HL. Microrna-451 inhibits growth of human colorectal carcinoma cells via downregulation of pi3k/akt pathway. Asian Pac J Cancer Prev : APJCP. 2013;14:3631–4.

    Article  PubMed  Google Scholar 

  12. Lou X, Qi X, Zhang Y, Long H, Yang J. Decreased expression of microrna-625 is associated with tumor metastasis and poor prognosis in patients with colorectal cancer. J Surg Oncol. 2013;108:230–5.

    Article  CAS  PubMed  Google Scholar 

  13. Yang IP, Tsai HL, Huang CW, Huang MY, Hou MF, Juo SH, et al. The functional significance of microrna-29c in patients with colorectal cancer: a potential circulating biomarker for predicting early relapse. PLoS One. 2013;8:e66842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ishikawa K, Kamohara Y, Tanaka F, Haraguchi N, Mimori K, Inoue H, et al. Mitotic centromere-associated kinesin is a novel marker for prognosis and lymph node metastasis in colorectal cancer. Br J Cancer. 2008;98:1824–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kline-Smith SL, Walczak CE. The microtubule-destabilizing kinesin xkcm1 regulates microtubule dynamic instability in cells. Mol Biol Cell. 2002;13:2718–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manning AL, Ganem NJ, Bakhoum SF, Wagenbach M, Wordeman L, Compton DA. The kinesin-13 proteins kif2a, kif2b, and kif2c/mcak have distinct roles during mitosis in human cells. Mol Biol Cell. 2007;18:2970–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ganem NJ, Compton DA. The kini kinesin kif2a is required for bipolar spindle assembly through a functional relationship with mcak. J Cell Biol. 2004;166:473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gaetz J, Kapoor TM. Dynein/dynactin regulate metaphase spindle length by targeting depolymerizing activities to spindle poles. J Cell Biol. 2004;166:465–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang CQ, Qu X, Zhang XY, Zhou CJ, Liu GX, Dong ZQ, et al. Overexpression of kif2a promotes the progression and metastasis of squamous cell carcinoma of the oral tongue. Oral Oncol. 2010;46:65–9.

    Article  PubMed  Google Scholar 

  20. Wang J, Ma S, Ma R, Qu X, Liu W, Lv C, et al. Kif2a silencing inhibits the proliferation and migration of breast cancer cells and correlates with unfavorable prognosis in breast cancer. BMC Cancer. 2014;14:461.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang K, Lin C, Wang C, Shao Q, Gao W, Song B, et al. Silencing kif2a induces apoptosis in squamous cell carcinoma of the oral tongue through inhibition of the pi3k/akt signaling pathway. Molec Med Rep. 2014;9:273–8.

    CAS  Google Scholar 

  22. Schimizzi GV, Currie JD, Rogers SL. Expression levels of a kinesin-13 microtubule depolymerase modulates the effectiveness of anti-microtubule agents. PLoS One. 2010;5:e11381.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Han L, Jiang B, Wu H, Wang X, Tang X, Huang J, et al. High expression of cxcr2 is associated with tumorigenesis, progression, and prognosis of laryngeal squamous cell carcinoma. Med Oncol. 2012;29:2466–72.

    Article  CAS  PubMed  Google Scholar 

  24. Sun R, Wang X, Zhu H, Mei H, Wang W, Zhang S, et al. Prognostic value of lamp3 and tp53 overexpression in benign and malignant gastrointestinal tissues. Oncotarget. 2014;5:12398–409.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang J, Zhang J, Li H, Lu Z, Shan W, Mercado-Uribe I, et al. Vcam1 expression correlated with tumorigenesis and poor prognosis in high grade serous ovarian cancer. Am J Transl Res. 2013;5:336–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. de Kok IM, Wong CS, Chia KS, Sim X, Tan CS, Kiemeney LA, et al. Gender differences in the trend of colorectal cancer incidence in singapore, 1968–2002. Int J Color Dis. 2008;23:461–7.

    Article  Google Scholar 

  27. Garcia-Alvarez A, Serra-Majem L, Ribas-Barba L, Castell C, Foz M, Uauy R, et al. Obesity and overweight trends in Catalonia, Spain (1992–2003): gender and socio-economic determinants. Public Health Nutr. 2007;10:1368–78.

    Article  PubMed  Google Scholar 

  28. Austin H, Henley SJ, King J, Richardson LC, Eheman C. Changes in colorectal cancer incidence rates in young and older adults in the united states: what does it tell us about screening. Cancer Causes Control : CCC. 2014;25:191–201.

    Article  PubMed  Google Scholar 

  29. Rath O, Kozielski F. Kinesins and cancer. Nat Rev Cancer. 2012;12:527–39.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu C, Zhao J, Bibikova M, Leverson JD, Bossy-Wetzel E, Fan JB, et al. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using rna interference. Mol Biol Cell. 2005;16:3187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Honore S, Pasquier E, Braguer D. Understanding microtubule dynamics for improved cancer therapy. Cell Molec Life Sci : CMLS. 2005;62:3039–56.

  32. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, et al. Ras/raf/mek/erk and pi3k/pten/akt/mtor cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget. 2012;3:1068–111.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, et al. Ras/raf/mek/erk and pi3k/pten/akt/mtor inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget. 2011;2:135–64.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bader AG, Kang S, Zhao L, Vogt PK. Oncogenic pi3k deregulates transcription and translation. Nat Rev Cancer. 2005;5:921–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Technological Innovation and Demonstration of Social Undertakings Projects (HS2014049) of Nantong, Jiangsu, China, and the Translational Medicine Research (TDFzh2014001) from the Affiliated Hospital of Nantong University, Jiangsu, China.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Wang.

Additional information

Xiangjun Fan and Xudong Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Wang, X., Zhu, H. et al. KIF2A overexpression and its association with clinicopathologic characteristics and unfavorable prognosis in colorectal cancer. Tumor Biol. 36, 8895–8902 (2015). https://doi.org/10.1007/s13277-015-3603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3603-z

Keywords

Navigation