Skip to main content

Advertisement

Log in

ObRb downregulation increases breast cancer cell sensitivity to tamoxifen

  • Research Article
  • Published:
Tumor Biology

Abstract

Leptin is a potent adipokine that plays an important role in the progression of breast cancer and interferes with the action of tamoxifen. We investigated the molecular mechanism underlying the effect of leptin on tamoxifen resistance in breast cancer cells that express leptin receptor (ObRb), and evaluated the impact of ObRb suppression on tamoxifen treatment in MCF-7 and tamoxifen-resistant (TAM-R) cells. Leptin-induced signaling pathway activation was examined by qRT-PCR and Western blotting. Chromatin immunoprecipitation assays were performed to further examine the binding of estrogen receptor (ER) α on the promoter of cyclin D1 (CCND1) gene. The effects of combined ObRb knockdown and tamoxifen treatment were evaluated in MCF-7 and TAM-R cells. We found that the enhanced proliferation effects induced by leptin were related to extracellular-signal-regulated kinase (ERK) 1/2 and signal transducers and activators of transcription (STAT) 3 signaling pathway activation and CCND1 upregulation. Leptin enhanced CCND1 gene transcription by inducing the binding of ERα to the promoter of CCND1 gene. ObRb knockdown significantly enhanced the inhibitory effects of tamoxifen on TAM-R cell proliferation and survival. This study suggested that long-term endocrine therapy facilitates leptin and ObRb overexpression in breast cancer cells, which attenuates the inhibitory effect of tamoxifen by activating both the ERK1/2 and STAT3 signaling pathways and upregulating CCND1 gene expression. Combination therapy involving ObRb knockdown and tamoxifen treatment may be an alternative therapeutic option for tamoxifen-resistant breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. Cancer J Clin. 2012;62(1):10–29. doi:10.3322/caac.20138.

    Article  Google Scholar 

  2. Hurvitz SA, Pietras RJ. Rational management of endocrine resistance in breast cancer: a comprehensive review of estrogen receptor biology, treatment options, and future directions. Cancer. 2008;113(9):2385–97. doi:10.1002/cncr.23875.

    Article  CAS  PubMed  Google Scholar 

  3. Briest S, Stearns V. Tamoxifen metabolism and its effect on endocrine treatment of breast cancer. Clin Adv Hematol Oncol. 2009;7(3):185–92.

    PubMed  Google Scholar 

  4. Lonning PE. Adjuvant endocrine treatment of early breast cancer. Hematol Oncol Clin North Am. 2007;21(2):223–38. doi:10.1016/j.hoc.2007.03.002.

    Article  PubMed  Google Scholar 

  5. Delozier T, Spielmann M, Mace-Lesec’h J, Janvier M, Hill C, Asselain B, et al. Tamoxifen adjuvant treatment duration in early breast cancer: initial results of a randomized study comparing short-term treatment with long-term treatment. Federation Nationale des Centres de Lutte Contre le Cancer Breast Group. J Clin Oncol. 2000;18(20):3507–12.

    Article  CAS  PubMed  Google Scholar 

  6. van Agthoven T, Sieuwerts AM, Meijer-van Gelder ME, Look MP, Smid M, Veldscholte J, et al. Relevance of breast cancer antiestrogen resistance genes in human breast cancer progression and tamoxifen resistance. J Clin Oncol. 2009;27(4):542–9. doi:10.1200/JCO.2008.17.1462.

    Article  PubMed  Google Scholar 

  7. Huang L, Li C. Leptin: a multifunctional hormone. Cell Res. 2000;10(2):81–92. doi:10.1038/sj.cr.7290038.

    Article  CAS  PubMed  Google Scholar 

  8. Rose DP, Komninou D, Stephenson GD. Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev. 2004;5(3):153–65. doi:10.1111/j.1467-789X.2004.00142.x.

    Article  CAS  PubMed  Google Scholar 

  9. Zabeau L, Lavens D, Peelman F, Eyckerman S, Vandekerckhove J, Tavernier J. The ins and outs of leptin receptor activation. FEBS Lett. 2003;546(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  10. Bjorbaek C, Uotani S, da Silva B, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem. 1997;272(51):32686–95.

    Article  CAS  PubMed  Google Scholar 

  11. Garofalo C, Koda M, Cascio S, Sulkowska M, Kanczuga-Koda L, Golaszewska J, et al. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli. Clin Cancer Res. 2006;12(5):1447–53. doi:10.1158/1078-0432.CCR-05-1913.

    Article  CAS  PubMed  Google Scholar 

  12. Ishikawa M, Kitayama J, Nagawa H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin Cancer Res. 2004;10(13):4325–31. doi:10.1158/1078-0432.CCR-03-0749.

    Article  CAS  PubMed  Google Scholar 

  13. Dubois V, Jarde T, Delort L, Billard H, Bernard-Gallon D, Berger E, et al. Leptin induces a proliferative response in breast cancer cells but not in normal breast cells. Nutr Cancer. 2014;66(4):645–55. doi:10.1080/01635581.2014.894104.

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Zha X, Chen W, Zhu T, Qiu J, Roe OD, et al. Leptin attenuates the anti-estrogen effect of tamoxifen in breast cancer. Biomed Pharmacother. 2013;67(1):22–30. doi:10.1016/j.biopha.2012.10.001.

    Article  CAS  PubMed  Google Scholar 

  15. Yuan HJ, Sun KW, Yu K. Leptin promotes the proliferation and migration of human breast cancer through the extracellular-signal regulated kinase pathway. Mol Med Rep. 2014;9(1):350–4. doi:10.3892/mmr.2013.1786.

    CAS  PubMed  Google Scholar 

  16. Yamashita T, Murakami T, Otani S, Kuwajima M, Shima K. Leptin receptor signal transduction: OBRa and OBRb of fa type. Biochem Biophys Res Commun. 1998;246(3):752–9. doi:10.1006/bbrc.1998.8689.

    Article  CAS  PubMed  Google Scholar 

  17. Massarweh S, Schiff R. Unraveling the mechanisms of endocrine resistance in breast cancer: new therapeutic opportunities. Clin Cancer Res. 2007;13(7):1950–4. doi:10.1158/1078-0432.CCR-06-2540.

    Article  CAS  PubMed  Google Scholar 

  18. Ando S, Catalano S. The multifactorial role of leptin in driving the breast cancer microenvironment. Nat Rev Endocrinol. 2012;8(5):263–75. doi:10.1038/nrendo.2011.184.

    Article  CAS  Google Scholar 

  19. Yom CK, Lee KM, Han W, Kim SW, Kim HS, Moon BI, et al. Leptin as a potential target for estrogen receptor-positive breast cancer. J Breast Cancer. 2013;16(2):138–45. doi:10.4048/jbc.2013.16.2.138.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bostner J, Ahnstrom Waltersson M, Fornander T, Skoog L, Nordenskjold B, Stal O. Amplification of CCND1 and PAK1 as predictors of recurrence and tamoxifen resistance in postmenopausal breast cancer. Oncogene. 2007;26(49):6997–7005. doi:10.1038/sj.onc.1210506.

    Article  CAS  PubMed  Google Scholar 

  21. Stendahl M, Kronblad A, Ryden L, Emdin S, Bengtsson NO, Landberg G. Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal breast cancer patients. Br J Cancer. 2004;90(10):1942–8. doi:10.1038/sj.bjc.6601831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Catalano S, Giordano C, Rizza P, Gu G, Barone I, Bonofiglio D, et al. Evidence that leptin through STAT and CREB signaling enhances cyclin D1 expression and promotes human endometrial cancer proliferation. J Cell Physiol. 2009;218(3):490–500. doi:10.1002/jcp.21622.

    Article  CAS  PubMed  Google Scholar 

  23. Michalides R, Hageman P, van Tinteren H, Houben L, Wientjens E, Klompmaker R, et al. A clinicopathological study on overexpression of cyclin D1 and of p53 in a series of 248 patients with operable breast cancer. Br J Cancer. 1996;73(6):728–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fan P, Wang J, Santen RJ, Yue W. Long-term treatment with tamoxifen facilitates translocation of estrogen receptor alpha out of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells. Cancer Res. 2007;67(3):1352–60. doi:10.1158/0008-5472.CAN-06-1020.

    Article  CAS  PubMed  Google Scholar 

  25. Saxena NK, Vertino PM, Anania FA, Sharma D. Leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3. J Biol Chem. 2007;282(18):13316–25. doi:10.1074/jbc.M609798200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eeckhoute J, Carroll JS, Geistlinger TR, Torres-Arzayus MI, Brown M. A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev. 2006;20(18):2513–26. doi:10.1101/gad.1446006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Binai NA, Damert A, Carra G, Steckelbroeck S, Lower J, Lower R, et al. Expression of estrogen receptor alpha increases leptin-induced STAT3 activity in breast cancer cells. Int J Cancer. 2010;127(1):55–66. doi:10.1002/ijc.25010.

    Article  CAS  PubMed  Google Scholar 

  28. Catalano S, Marsico S, Giordano C, Mauro L, Rizza P, Panno ML, et al. Leptin enhances, via AP-1, expression of aromatase in the MCF-7 cell line. J Biol Chem. 2003;278(31):28668–76. doi:10.1074/jbc.M301695200.

    Article  CAS  PubMed  Google Scholar 

  29. Hui R, Finney GL, Carroll JS, Lee CS, Musgrove EA, Sutherland RL. Constitutive overexpression of cyclin D1 but not cyclin E confers acute resistance to antiestrogens in T-47D breast cancer cells. Cancer Res. 2002;62(23):6916–23.

    CAS  PubMed  Google Scholar 

  30. Miyoshi Y, Funahashi T, Tanaka S, Taguchi T, Tamaki Y, Shimomura I, et al. High expression of leptin receptor mRNA in breast cancer tissue predicts poor prognosis for patients with high, but not low, serum leptin levels. Int J Cancer. 2006;118(6):1414–9. doi:10.1002/ijc.21543.

    Article  CAS  PubMed  Google Scholar 

  31. Fusco R, Galgani M, Procaccini C, Franco R, Pirozzi G, Fucci L, et al. Cellular and molecular crosstalk between leptin receptor and estrogen receptor-{alpha} in breast cancer: molecular basis for a novel therapeutic setting. Endocr Relat Cancer. 2010;17(2):373–82. doi:10.1677/ERC-09-0340.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant numbers 81301896, 81172503).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongmei Yin or Xiaofeng Chen.

Additional information

Yingying Qian and Dongmin Shi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 591 kb)

Online Resource 2

(PDF 511 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Shi, D., Qiu, J. et al. ObRb downregulation increases breast cancer cell sensitivity to tamoxifen. Tumor Biol. 36, 6813–6821 (2015). https://doi.org/10.1007/s13277-015-3375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3375-5

Keywords

Navigation