Skip to main content

Advertisement

Log in

Immunotherapy for lung cancer: for whom the bell tolls?

  • Review
  • Published:
Tumor Biology

Abstract

Lung cancer is the leading cause of cancer-related death and accounts for approximately 30 % of all cancer deaths. Despite the recent developments in personalized therapy, the prognosis in lung cancer is still very poor. Immunotherapy is now emerging as a new hope for patients with lung cancer. It is well known that standard chemotherapeutic regimens have devastating effects for the patient’s immune system. Therefore, the aim of immunotherapy is to specifically enhance the immune response against the tumour. Recently, many trials addressed the role of such therapies for metastatic non-small cell lung cancer (NSCLC) treatment: ipilimumab, tremelimumab, nivolumab and pembrolizumab are immunotherapeutic agents of high relevance in this field. Anti-tumour vaccines, as well as dendritic cell-based therapies, have emerged as potent inducers of immune response against the tumour. Herein, we will review some of the most promising cancer immunotherapies, highlighting their advantages and try to understand, in an immunological perspective, the missteps associated with the current treatments for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Centers for Disease C, Prevention. Annual smoking-attributable mortality, years of potential life lost, and productivity losses–United States, 1997–2001. MMWR Morb Mortal Wkly Rep. 2005;54(25):625–8.

    Google Scholar 

  2. Cokkinides V, Bandi P, McMahon C, Jemal A, Glynn T, Ward E. Tobacco control in the United States—recent progress and opportunities. CA Cancer J Clin. 2009;59(6):352–65.

    PubMed  Google Scholar 

  3. Jemal A, Thomas A, Murray T, Thun M. Cancer statistics, 2002. CA Cancer J Clin. 2002;52(1):23–47.

    PubMed  Google Scholar 

  4. Myers ML. The FCTC’s evidence-based policies remain a key to ending the tobacco epidemic. Tob Control. 2013;22 Suppl 1:i45–6.

    PubMed  PubMed Central  Google Scholar 

  5. Mulshine JL. Screening for lung cancer: in pursuit of pre-metastatic disease. Nat Rev Cancer. 2003;3(1):65–73.

    CAS  PubMed  Google Scholar 

  6. de Mello RA, Marques DS, Medeiros R, Araujo AM. Epidermal growth factor receptor and K-Ras in non-small cell lung cancer-molecular pathways involved and targeted therapies. World J Clin Oncol. 2011;2(11):367–76.

    PubMed  PubMed Central  Google Scholar 

  7. Felip E, Stahel R, Pavlidis N. ESMO Minimum Clinical Recommendations for diagnosis, treatment and follow-up of non-small-cell lung cancer (NSCLC). Ann Oncol. 2005;16(1):i28–9.

    PubMed  Google Scholar 

  8. Herbst R, Heymach J, Lippman S. Lung cancer. N Engl J Med. 2008;359(13):1367–80.

    CAS  PubMed  Google Scholar 

  9. Drilon A, Rekhtman N, Ladanyi M, Paik P. Squamous-cell carcinomas of the lung: emerging biology, controversies, and the promise of targeted therapy. Lancet Oncol. 2012;13(10):e418–26.

    CAS  PubMed  Google Scholar 

  10. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81.

    CAS  PubMed  Google Scholar 

  11. de Mello RA, Pires FS, Marques DS, Oliveira J, Rodrigues A, Soares M, et al. EGFR exon mutation distribution and outcome in non-small-cell lung cancer: a Portuguese retrospective study. Tumour Biol. 2012. doi:10.1007/s13277-012-0465-5.

    Google Scholar 

  12. Dienstmann R, Martinez P, Felip E. Personalizing therapy with targeted agents in non-small cell lung cancer. Oncotarget. 2011;2(3):165–77.

    PubMed  PubMed Central  Google Scholar 

  13. Jemal A, Bray F, Center M, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    PubMed  Google Scholar 

  14. Sculier J, Chansky K, Crowley J, Van Meerbeeck J, Goldstraw P. The impact of additional prognostic factors on survival and their relationship with the anatomical extent of disease expressed by the 6th Edition of the TNM Classification of Malignant Tumors and the proposals for the 7th Edition. J Thorac Oncol. 2008;3(5):457–66.

    PubMed  Google Scholar 

  15. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer. 2001;37 Suppl 4:S9–15.

    CAS  PubMed  Google Scholar 

  16. Hirsch FR, Varella-Garcia M, Bunn Jr PA, Di Maria MV, Veve R, Bremmes RM, et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21(20):3798–807.

    CAS  Google Scholar 

  17. Ohsaki Y, Tanno S, Fujita Y, Toyoshima E, Fujiuchi S, Nishigaki Y, et al. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol Rep. 2000;7(3):603–7.

    CAS  PubMed  Google Scholar 

  18. de Mello RA, Madureira P, Carvalho LS, Araujo A, O’Brien M, Popat S. EGFR and KRAS mutations, and ALK fusions: current developments and personalized therapies for patients with advanced non-small-cell lung cancer. Pharmacogenomics. 2013;14(14):1765–77.

    PubMed  Google Scholar 

  19. de Mello RA. Genetic polymorphisms and non-small-cell lung cancer: future paradigms. Einstein (São Paulo). 2014;12(4):524–6.

    Google Scholar 

  20. Krause D, Van Etten R. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172–87.

    CAS  PubMed  Google Scholar 

  21. Shepherd F, Rodrigues Pereira J, Ciuleanu T, Tan E, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353(2):123–32.

    CAS  PubMed  Google Scholar 

  22. Lynch T, Bell D, Sordella R, Gurubhagavatula S, Okimoto R, Brannigan B, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39.

    CAS  PubMed  Google Scholar 

  23. Cappuzzo F, Hirsch F, Rossi E, Bartolini S, Ceresoli G, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefi tinib sensitivity in non-small-cell lung cancer. J Nat Cancer Inst. 2005;97(9):643–55.

    CAS  PubMed  Google Scholar 

  24. Brundage M, Davies D, Mackillop W. Prognostic factors in non-small cell lung cancer. Chest. 2002;122(3):1037–57.

    PubMed  Google Scholar 

  25. Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet. 2010;11(1):47–59.

    CAS  PubMed  Google Scholar 

  26. Lanzavecchia A, Sallusto F. Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol. 2001;2(6):487–92.

    CAS  PubMed  Google Scholar 

  27. Li QJ, Dinner AR, Qi S, Irvine DJ, Huppa JB, Davis MM, et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat Immunol. 2004;5(8):791–9.

    CAS  PubMed  Google Scholar 

  28. Schwartz JC, Zhang X, Nathenson SG, Almo SC. Structural mechanisms of costimulation. Nat Immunol. 2002;3(5):427–34.

    CAS  PubMed  Google Scholar 

  29. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.

    CAS  PubMed  Google Scholar 

  30. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.

    CAS  PubMed  Google Scholar 

  31. Schenten D, Medzhitov R. The control of adaptive immune responses by the innate immune system. Adv Immunol. 2011;109:87–124.

    CAS  PubMed  Google Scholar 

  32. Pradere JP, Dapito DH, Schwabe RF. The Yin and Yang of Toll-like receptors in cancer. Oncogene. 2014;33(27):3485–95.

  33. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249(1):158–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Moseley P. Stress proteins and the immune response. Immunopharmacology. 2000;48(3):299–302.

    CAS  PubMed  Google Scholar 

  35. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med. 2001;193(2):233–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Garbi N, Hammerling GJ, Probst HC, van den Broek M. Tonic T cell signalling and T cell tolerance as opposite effects of self-recognition on dendritic cells. Curr Opin Immunol. 2010;22(5):601–8.

    CAS  PubMed  Google Scholar 

  37. Mueller DL. Mechanisms maintaining peripheral tolerance. Nat Immunol. 2010;11(1):21–7.

    CAS  PubMed  Google Scholar 

  38. Burnet M. Cancer; a biological approach. I. The processes of control. Br Med J. 1957;1(5022):779–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J. 1957;1(5023):841–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dighe AS, Richards E, Old LJ, Schreiber RD. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity. 1994;1(6):447–56.

    CAS  PubMed  Google Scholar 

  41. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410(6832):1107–11.

    CAS  PubMed  Google Scholar 

  42. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med. 2000;192(5):755–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nishikawa H, Kato T, Tanida K, Hiasa A, Tawara I, Ikeda H, et al. CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc Natl Acad Sci U S A. 2003;100(19):10902–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nishikawa H, Kato T, Tawara I, Saito K, Ikeda H, Kuribayashi K, et al. Definition of target antigens for naturally occurring CD4(+) CD25(+) regulatory T cells. J Exp Med. 2005;201(5):681–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nishikawa H, Kato T, Tawara I, Takemitsu T, Saito K, Wang L, et al. Accelerated chemically induced tumor development mediated by CD4+CD25+ regulatory T cells in wild-type hosts. Proc Natl Acad Sci U S A. 2005;102(26):9253–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

    CAS  PubMed  Google Scholar 

  47. Clark CE, Beatty GL, Vonderheide RH. Immunosurveillance of pancreatic adenocarcinoma: insights from genetically engineered mouse models of cancer. Cancer Lett. 2009;279(1):1–7.

    CAS  PubMed  Google Scholar 

  48. Fuchs EJ, Matzinger P. Is cancer dangerous to the immune system? Semin Immunol. 1996;8(5):271–80.

    CAS  PubMed  Google Scholar 

  49. Li Z, Pang Y, Gara SK, Achyut BR, Heger C, Goldsmith PK, et al. Gr-1+CD11b+cells are responsible for tumor promoting effect of TGF-beta in breast cancer progression. Int J Cancer J Int Cancer. 2012;131(11):2584–95.

    CAS  Google Scholar 

  50. Yang L. TGFbeta, a potent regulator of tumor microenvironment and host immune response, implication for therapy. Curr Mol Med. 2010;10(4):374–80.

    CAS  PubMed  Google Scholar 

  51. Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med. 2013;210(7):1389–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20(6):607–15.

  53. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Han EC, Lee J, Ryu SW, Choi C. Tumor-conditioned Gr-1(+)CD11b(+) myeloid cells induce angiogenesis through the synergistic action of CCL2 and CXCL16 in vitro. Biochem Biophys Res Commun. 2014;443(4):1218–25.

    CAS  PubMed  Google Scholar 

  55. Chang S, Lin X, Higashikubo R, Toth K, Gelman AE, Kreisel D, et al. Unique pulmonary antigen presentation may call for an alternative approach toward lung cancer immunotherapy. Oncoimmunology. 2013;2(3):e23563.

    PubMed  PubMed Central  Google Scholar 

  56. Declerck S, Vansteenkiste J. Immunotherapy for lung cancer: ongoing clinical trials. Future Oncol. 2014;10(1):91–105.

    CAS  PubMed  Google Scholar 

  57. McCarthy F, Roshani R, Steele J, Hagemann T. Current clinical immunotherapy targets in advanced nonsmall cell lung cancer (NSCLC). J Leukoc Biol. 2013;94(6):1201–6.

    PubMed  Google Scholar 

  58. Winter H, van den Engel NK, Rusan M, Schupp N, Poehlein CH, Hu HM, et al. Active-specific immunotherapy for non-small cell lung cancer. J Thorac Dis. 2011;3(2):105–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001;61(12):4766–72.

    CAS  PubMed  Google Scholar 

  60. Arnold JN, Magiera L, Kraman M, Fearon DT. Tumoral immune suppression by macrophages expressing fibroblast activation protein-alpha and heme oxygenase-1. Cancer Immunol Res. 2014;2(2):121–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bonde AK, Tischler V, Kumar S, Soltermann A, Schwendener RA. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer. 2012;12:35.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Joshi S, Singh AR, Zulcic M, Bao L, Messer K, Ideker T, et al. Rac2 controls tumor growth, metastasis and m1-m2 macrophage differentiation in vivo. PLoS One. 2014;9(4):e95893.

    PubMed  PubMed Central  Google Scholar 

  63. Liu CY, Xu JY, Shi XY, Huang W, Ruan TY, Xie P, et al. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Investig J Tech Methods Pathol. 2013;93(7):844–54.

    CAS  Google Scholar 

  64. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.

    CAS  PubMed  Google Scholar 

  66. Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, et al. Trial watch: chemotherapy with immunogenic cell death inducers. Oncoimmunology. 2013;2(3):e23510.

    PubMed  PubMed Central  Google Scholar 

  67. Eggermont AM, Kroemer G, Zitvogel L. Immunotherapy and the concept of a clinical cure. Eur J Cancer. 2013;49(14):2965–7.

    CAS  PubMed  Google Scholar 

  68. Rijavec E, Genova C, Alama A, Barletta G, Sini C, Pronzato P, et al. Role of immunotherapy in the treatment of advanced non-small-cell lung cancer. Future Oncol. 2014;10(1):79–90.

    CAS  PubMed  Google Scholar 

  69. Correale P, Tindara Miano S, Remondo C, Migali C, Saveria Rotundo M, Macri P, et al. Second-line treatment of non small cell lung cancer by biweekly gemcitabine and docetaxel +/− granulocyte-macrophage colony stimulating factor and low dose aldesleukine. Cancer Biol Ther. 2009;8(6):497–502.

    CAS  PubMed  Google Scholar 

  70. Ridolfi L, Bertetto O, Santo A, Naglieri E, Lopez M, Recchia F, et al. Chemotherapy with or without low-dose interleukin-2 in advanced non-small cell lung cancer: results from a phase III randomized multicentric trial. Int J Oncol. 2011;39(4):1011–7.

    CAS  PubMed  Google Scholar 

  71. Amin A, White Jr RL. High-dose interleukin-2: is it still indicated for melanoma and RCC in an era of targeted therapies? Oncology. 2013;27(7):680–91.

    PubMed  Google Scholar 

  72. Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001;19:565–94.

    CAS  PubMed  Google Scholar 

  73. Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med. 1996;183(6):2533–40.

    CAS  PubMed  Google Scholar 

  74. Schneider H, Downey J, Smith A, Zinselmeyer BH, Rush C, Brewer JM, et al. Reversal of the TCR stop signal by CTLA-4. Science. 2006;313(5795):1972–5.

    CAS  PubMed  Google Scholar 

  75. Egen JG, Allison JP. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity. 2002;16(1):23–35.

    CAS  PubMed  Google Scholar 

  76. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1(9):793–801.

    CAS  PubMed  Google Scholar 

  77. Riley JL, Mao M, Kobayashi S, Biery M, Burchard J, Cavet G, et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci U S A. 2002;99(18):11790–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Schneider H, Mandelbrot DA, Greenwald RJ, Ng F, Lechler R, Sharpe AH, et al. Cutting edge: CTLA-4 (CD152) differentially regulates mitogen-activated protein kinases (extracellular signal-regulated kinase and c-Jun N-terminal kinase) in CD4+ T cells from receptor/ligand-deficient mice. J Immunol. 2002;169(7):3475–9.

    CAS  PubMed  Google Scholar 

  79. Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009;229(1):12–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541–7.

    CAS  PubMed  Google Scholar 

  82. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    CAS  PubMed  Google Scholar 

  83. van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190(3):355–66.

    PubMed  PubMed Central  Google Scholar 

  84. Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV, et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci U S A. 2003;100(8):4712–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Beck KE, Blansfield JA, Tran KQ, Feldman AL, Hughes MS, Royal RE, et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(15):2283–9.

    CAS  Google Scholar 

  86. Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 2003;100(14):8372–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ribas A, Camacho LH, Lopez-Berestein G, Pavlov D, Bulanhagui CA, Millham R, et al. Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(35):8968–77.

    CAS  Google Scholar 

  88. Ribas A. Clinical development of the anti-CTLA-4 antibody tremelimumab. Semin Oncol. 2010;37(5):450–4.

    CAS  PubMed  Google Scholar 

  89. Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(17):2046–54.

    CAS  Google Scholar 

  90. Reck M, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol. 2013;24(1):75–83.

    CAS  PubMed  Google Scholar 

  91. Hannani D, Vetizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25(2):208–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Shrikant P, Khoruts A, Mescher MF. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity. 1999;11(4):483–93.

    CAS  PubMed  Google Scholar 

  93. Maker AV, Phan GQ, Attia P, Yang JC, Sherry RM, Topalian SL, et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol. 2005;12(12):1005–16.

    PubMed  PubMed Central  Google Scholar 

  94. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5(12):1365–9.

    CAS  PubMed  Google Scholar 

  95. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–8.

    CAS  PubMed  Google Scholar 

  97. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206(13):3015–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 2006;203(4):883–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800.

    CAS  PubMed  Google Scholar 

  100. Creelan BC, Antonia SJ. Immunotherapy in lung cancer: “b7-bombers” and other new developments. Semin Respir Crit Care Med. 2013;34(6):810–21.

    PubMed  Google Scholar 

  101. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(19):3167–75.

    CAS  Google Scholar 

  102. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. de Mello RA, Pousa I, Pereira D. Nivolumab for advanced squamous cell lung cancer: what are the next steps? Lancet Oncol. 2015. doi:10.1016/S1470-2045(15)70074-4.

  104. Fanoni D, Tavecchio S, Recalcati S, Balice Y, Venegoni L, Fiorani R, et al. New monoclonal antibodies against B-cell antigens: possible new strategies for diagnosis of primary cutaneous B-cell lymphomas. Immunol Lett. 2011;134(2):157–60.

    CAS  PubMed  Google Scholar 

  105. Terme M, Ullrich E, Aymeric L, Meinhardt K, Desbois M, Delahaye N, et al. IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 2011;71(16):5393–9.

    CAS  PubMed  Google Scholar 

  106. Velu V, Titanji K, Zhu B, Husain S, Pladevega A, Lai L, et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature. 2009;458(7235):206–10.

    CAS  PubMed  Google Scholar 

  107. Langer CJ. Emerging Immunotherapies in the treatment of non-small cell lung cancer (NSCLC): the role of immune checkpoint inhibitors. Am J Clin Oncol. 2014.

  108. Hosoi A, Matsushita H, Shimizu K, Fujii S, Ueha S, Abe J, et al. Adoptive cytotoxic T lymphocyte therapy triggers a counter-regulatory immunosuppressive mechanism via recruitment of myeloid-derived suppressor cells. Int J Cancer J Int Cancer. 2014;134(8):1810–22.

    CAS  Google Scholar 

  109. Larmonier N, Fraszczak J, Lakomy D, Bonnotte B, Katsanis E. Killer dendritic cells and their potential for cancer immunotherapy. Cancer Immunol Immunother CII. 2010;59(1):1–11.

    PubMed  Google Scholar 

  110. Wimmers F, Schreibelt G, Skold AE, Figdor CG, De Vries IJ. Paradigm shift in dendritic cell-based immunotherapy: from generated monocyte-derived DCs to naturally circulating DC subsets. Front Immunol. 2014;5:165.

    PubMed  PubMed Central  Google Scholar 

  111. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med. 1996;2(1):52–8.

    CAS  PubMed  Google Scholar 

  112. Skachkova OV, Khranovska NM, Gorbach OI, Svergun NM, Sydor RI, Nikulina VV. Immunological markers of anti-tumor dendritic cells vaccine efficiency in patients with non-small cell lung cancer. Exp Oncol. 2013;35(2):109–13.

    CAS  PubMed  Google Scholar 

  113. Vansteenkiste J, Zielinski M, Linder A, Dahabreh J, Gonzalez EE, Malinowski W, et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: phase II randomized study results. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(19):2396–403.

    CAS  Google Scholar 

  114. Butts C, Murray N, Maksymiuk A, Goss G, Marshall E, Soulières D, et al. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(27):6674–81.

    CAS  Google Scholar 

  115. Butts C, Maksymiuk A, Goss G, Soulières D, Marshall E, Cormier Y, et al. Updated survival analysis in patients with stage IIIB or IV non-small-cell lung cancer receiving BLP25 liposome vaccine (L-BLP25): phase IIB randomized, multicenter, open-label trial. J Cancer Res Clin Oncol. 2011;137(9):1337–42.

    CAS  PubMed  Google Scholar 

  116. Ramlau R, Quoix E, Rolski J, Pless M, Lena H, Lévy E, et al. A phase II study of Tg4010 (Mva-Muc1-Il2) in association with chemotherapy in patients with stage III/IV non-small cell lung cancer. J Thorac Oncol. 2008;3(7):735–44.

    PubMed  Google Scholar 

  117. Quoix E, Ramlau R, Westeel V, Papai Z, Madroszyk A, Riviere A, et al. Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non-small-cell lung cancer: a controlled phase 2B trial. Lancet Oncol. 2011;12(12):1125–33.

    CAS  PubMed  Google Scholar 

  118. Vinageras EN, de la Torre A, Rodríguez MO, Ferrer MC, Bravo I, del Pino MM, et al. Phase II randomized controlled trial of an epidermal growth factor vaccine in advanced non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(9):1452–8.

    CAS  Google Scholar 

  119. Grant SC, Kris MG, Houghton AN, Chapman PB. Long survival of patients with small cell lung cancer after adjuvant treatment with the anti-idiotypic antibody BEC2 plus Bacillus Calmette-Guerin. Clin Cancer Res. 1999;5(6):1319–23.

    CAS  PubMed  Google Scholar 

  120. Alfonso S, Valdés-Zayas A, Santiesteban ER, Flores YI, Areces F, Hernández M, et al. A randomized, multicenter, placebo-controlled clinical trial of racotumomab-alum vaccine as switch maintenance therapy in advanced non-small cell lung cancer patients. Clin Cancer Res. 2014;20(14):3660–71.

    CAS  PubMed  Google Scholar 

  121. Nemunaitis J, Jahan T, Ross H, Sterman D, Richards D, Fox B, et al. Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX® vaccine in advanced-stage non-small-cell lung cancer. Cancer Gene Ther. 2006;13(6):555–62.

    CAS  PubMed  Google Scholar 

  122. Nemunaitis J, Dillman RO, Schwarzenberger PO, Senzer N, Cunningham C, Cutler J, et al. Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(29):4721–30.

    CAS  Google Scholar 

  123. Domingues D, Turner A, Silva MD, Marques DS, Mellidez JC, Wannesson L, et al. Immunotherapy and lung cancer: current developments and novel targeted therapies. Immunotherapy. 2014;6(11):1221–35.

    CAS  PubMed  Google Scholar 

  124. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Andrade de Mello.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madureira, P., de Mello, R.A., de Vasconcelos, A. et al. Immunotherapy for lung cancer: for whom the bell tolls?. Tumor Biol. 36, 1411–1422 (2015). https://doi.org/10.1007/s13277-015-3285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3285-6

Keywords

Navigation