Skip to main content
Log in

Oncolytic adenovirus-mediated short hairpin RNA targeting MYCN gene induces apoptosis by upregulating RKIP in neuroblastoma

  • Research Article
  • Published:
Tumor Biology

Abstract

The amplification of MYCN is a typical characteristic of aggressive neuroblastomas, whereas acquired mutations of p53 lead to refractory and relapsed cases. We had previously examined the applicability of the replication-competent oncolytic adenovirus, ZD55-shMYCN, to deliver a short hairpin RNA targeting MYCN gene for p53-null and MYCN-amplified neuroblastoma cell line LA1-55N. Our data have shown that ZD55-shMYCN has an additive tumor growth inhibitory response through shRNA-mediated MYCN knockdown and ZD55-mediated cancer cell lysis. In this regard, ZD55-shMYCN can downregulate MYCN and perform anticancer effects, thereby acquiring significance in the administration of MYCN-amplified and p53-null neuroblastomas. Hence, we further investigated the anticancer properties of ZD55-shMYCN in neuroblastomas. Our data showed that ZD55-shMYCN induced G2/M arrest via decreasing the levels of cyclin D1 and cyclin B1 irrespective of p53 status. ZD55-shMYCN effectively induced apoptosis in neuroblastomas through activation of caspase-3 and enhancing PARP cleavage. Furthermore, ZD55-shMYCN could downregulate phosphoinositide 3-kinase and pAkt and upregulate RKIP levels. Similarly, pro-apoptosis was revealed by the histopathologic examination of paraffin-embedded section of resected tumors of mice xenograft. In vitro and in vivo studies, we elucidate the apoptosis properties and mechanisms of action of ZD55-shMYCN, which provide a promising approach for further clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matthay KK. Neuroblastoma: a clinical challenge and biologic puzzle. CA: Cancer J Clin. 1995;45(3):179–92.

    CAS  Google Scholar 

  2. Castleberry RP. Predicting outcome in neuroblastoma. N Engl J Med. 1999;340(25):1992–3. doi:10.1056/NEJM199906243402510.

    Article  CAS  PubMed  Google Scholar 

  3. Cornero A, Acquaviva M, Fardin P, Versteeg R, Schramm A, Eva A, et al. Design of a multi-signature ensemble classifier predicting neuroblastoma patients’ outcome. BMC Bioinf. 2012;13(4):S13. doi:10.1186/1471-2105-13-S4-S13.

    Article  Google Scholar 

  4. Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev. 2009;61(10):850–62. doi:10.1016/j.addr.2009.04.018.

    Article  CAS  PubMed  Google Scholar 

  5. Kang JH, Rychahou PG, Ishola TA, Qiao J, Evers BM, Chung DH. MYCN silencing induces differentiation and apoptosis in human neuroblastoma cells. Biochem Biophys Res Commun. 2006;351(1):192–7. doi:10.1016/j.bbrc.2006.10.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Novina CD, Sharp PA. The RNAi revolution. Nature. 2004;430(6996):161–4. doi:10.1038/430161a.

    Article  CAS  PubMed  Google Scholar 

  7. Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol. 2003;327(4):761–6.

    Article  CAS  PubMed  Google Scholar 

  8. Carette JE, Overmeer RM, Schagen FH, Alemany R, Barski OA, Gerritsen WR, et al. Conditionally replicating adenoviruses expressing short hairpin RNAs silence the expression of a target gene in cancer cells. Cancer Res. 2004;64(8):2663–7.

    Article  CAS  PubMed  Google Scholar 

  9. Wang QZ, Lv YH, Diao Y, Xu R. The design of vectors for RNAi delivery system. Curr Pharm Des. 2008;14(13):1327–40.

    Article  CAS  PubMed  Google Scholar 

  10. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991;252(5007):854–6.

    Article  CAS  PubMed  Google Scholar 

  11. Toth K, Doronin K, Tollefson AE, Wold WS. A multitasking oncolytic adenovirus vector. Mol Ther: J Am Soc Gene Ther. 2003;7(4):435–7.

    Article  CAS  Google Scholar 

  12. Lin E, Nemunaitis J. Oncolytic viral therapies. Cancer Gene Ther. 2004;11(10):643–64. doi:10.1038/sj.cgt.7700733.

    Article  CAS  PubMed  Google Scholar 

  13. Aghi M, Martuza RL. Oncolytic viral therapies—the clinical experience. Oncogene. 2005;24(52):7802–16. doi:10.1038/sj.onc.1209037.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang ZL, Zou WG, Luo CX, Li BH, Wang JH, Sun LY, et al. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res. 2003;13(6):481–9. doi:10.1038/sj.cr.7290191.

    Article  CAS  PubMed  Google Scholar 

  15. Liu XY. Targeting gene-virotherapy of cancer and its prosperity. Cell Res. 2006;16(11):879–86. doi:10.1038/sj.cr.7310108.

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Zhang B, Zhang H, Zhu X, Feng D, Zhang D, et al. Oncolytic adenovirus armed with shRNA targeting MYCN gene inhibits neuroblastoma cell proliferation and in vivo xenograft tumor growth. J Cancer Res Clin Oncol. 2013;139(6):933–41. doi:10.1007/s00432-013-1406-4.

    Article  CAS  PubMed  Google Scholar 

  17. van Noesel MM, Versteeg R. Pediatric neuroblastomas: genetic and epigenetic ‘danse macabre’. Gene. 2004;325:1–15.

    Article  PubMed  Google Scholar 

  18. Waters AM, Beierle EA. The interaction between FAK, MYCN, p53 and Mdm2 in neuroblastoma. Anti Cancer Agents Med Chem. 2014;14(1):46–51.

    Article  CAS  Google Scholar 

  19. Singhal J, Yadav S, Nagaprashantha LD, Vatsyayan R, Singhal SS, Awasthi S. Targeting p53-null neuroblastomas through RLIP76. Cancer Prev Res (Phila). 2011;4(6):879–89. doi:10.1158/1940-6207.CAPR-11-0025.

    Article  CAS  Google Scholar 

  20. Singhal SS, Wickramarachchi D, Yadav S, Singhal J, Leake K, Vatsyayan R, et al. Glutathione-conjugate transport by RLIP76 is required for clathrin-dependent endocytosis and chemical carcinogenesis. Mol Cancer Ther. 2011;10(1):16–28. doi:10.1158/1535-7163.MCT-10-0699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chesler L, Schlieve C, Goldenberg DD, Kenney A, Kim G, McMillan A, et al. Inhibition of phosphatidylinositol 3-kinase destabilizes Mycn protein and blocks malignant progression in neuroblastoma. Cancer Res. 2006;66(16):8139–46. doi:10.1158/0008-5472.CAN-05-2769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R, et al. RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem. 2004;279(17):17515–23. doi:10.1074/jbc.M313816200.

    Article  CAS  PubMed  Google Scholar 

  23. Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 2009;28(4):347–58. doi:10.1038/emboj.2008.294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature. 1999;401(6749):173–7. doi:10.1038/43686.

    Article  CAS  PubMed  Google Scholar 

  25. Hellmann J, Rommelspacher H, Muhlbauer E, Wernicke C. Raf kinase inhibitor protein enhances neuronal differentiation in human SH-SY5Y cells. Dev Neurosci. 2010;32(1):33–46. doi:10.1159/000236595.

    Article  CAS  PubMed  Google Scholar 

  26. Moreno L, Marshall LV, Pearson AD. At the frontier of progress for paediatric oncology: the neuroblastoma paradigm. Br Med Bull. 2013;108:173–88. doi:10.1093/bmb/ldt033.

    Article  PubMed  Google Scholar 

  27. Levy D, Aerts I, Michon J, Lumbroso-Le Rouic L, Cellier C, Orbach D. Childhood cancer: progress but prognosis still very unequal. Example of retinoblastoma and high-risk neuroblastoma. Bull Cancer. 2014;101(3):250–7. doi:10.1684/bdc.2014.1904.

    PubMed  Google Scholar 

  28. Charron M. Contemporary approach to diagnosis and treatment of neuroblastoma. Q J Nucl Med Mol Imaging. 2013;57(1):40–52.

    CAS  PubMed  Google Scholar 

  29. Stacey DW. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol. 2003;15(2):158–63.

    Article  CAS  PubMed  Google Scholar 

  30. Guo Y, Stacey DW, Hitomi M. Post-transcriptional regulation of cyclin D1 expression during G2 phase. Oncogene. 2002;21(49):7545–56. doi:10.1038/sj.onc.1205907.

    Article  CAS  PubMed  Google Scholar 

  31. Gabrielli BG, Sarcevic B, Sinnamon J, Walker G, Castellano M, Wang XQ, et al. A cyclin D-Cdk4 activity required for G2 phase cell cycle progression is inhibited in ultraviolet radiation-induced G2 phase delay. J Biol Chem. 1999;274(20):13961–9.

    Article  CAS  PubMed  Google Scholar 

  32. Chen Q, Zhang X, Jiang Q, Clarke PR, Zhang C. Cyclin B1 is localized to unattached kinetochores and contributes to efficient microtubule attachment and proper chromosome alignment during mitosis. Cell Res. 2008;18(2):268–80. doi:10.1038/cr.2008.11.

    Article  CAS  PubMed  Google Scholar 

  33. Innocente SA, Abrahamson JL, Cogswell JP, Lee JM. p53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci U S A. 1999;96(5):2147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park M, Chae HD, Yun J, Jung M, Kim YS, Kim SH, et al. Constitutive activation of cyclin B1-associated cdc2 kinase overrides p53-mediated G2-M arrest. Cancer Res. 2000;60(3):542–5.

    CAS  PubMed  Google Scholar 

  35. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–90. doi:10.1146/annurev.cellbio.15.1.269.

    Article  CAS  PubMed  Google Scholar 

  36. Sairanen T, Szepesi R, Karjalainen-Lindsberg ML, Saksi J, Paetau A, Lindsberg PJ. Neuronal caspase-3 and PARP-1 correlate differentially with apoptosis and necrosis in ischemic human stroke. Acta Neuropathol. 2009;118(4):541–52. doi:10.1007/s00401-009-0559-3.

    Article  CAS  PubMed  Google Scholar 

  37. Yeung K, Janosch P, McFerran B, Rose DW, Mischak H, Sedivy JM, et al. Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol Cell Biol. 2000;20(9):3079–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Trakul N, Rosner MR. Modulation of the MAP kinase signaling cascade by Raf kinase inhibitory protein. Cell Res. 2005;15(1):19–23. doi:10.1038/sj.cr.7290258.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Li or Junnian Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, H., Zhu, X. et al. Oncolytic adenovirus-mediated short hairpin RNA targeting MYCN gene induces apoptosis by upregulating RKIP in neuroblastoma. Tumor Biol. 36, 6037–6043 (2015). https://doi.org/10.1007/s13277-015-3280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3280-y

Keywords

Navigation