Skip to main content

Advertisement

Log in

Combined methylation of p16 and hMLH1 (CMETH2) discriminates a subpopulation with better prognosis in colorectal cancer patients with microsatellite instability tumors

  • Research Article
  • Published:
Tumor Biology

Abstract

The aim of this study was to determine the frequency of p16 and hMLH1 genes simultaneous methylation in colorectal cancer patients with Microsatellite Instability (MSI) tumors. We also wanted to analyze the relationship with other clinical features, with BRAF gene V600E mutation and with prognosis. Samples from fifty one patients with MSI positive sporadic colorectal cancer were included. DNA was extracted from tumor samples. Promoter methylation was analyzed using bisulfite modification and was detected by quantitative methylation-specific PCR. BRAF gene was amplified using specific primers and mutations were detected by real time PCR. Simultaneous methylation was transformed in a new variable called CMETH2. Frequency of CMETH2 was analyzed and compared with other clinicopathological variables. 33.3 % of patients were positive for CMETH2 and 25 % had BRAF V600E mutation. CMETH2 was related with proximal location, with poorly differentiated tumors and with BRAF V600E mutation. CMETH2 only showed influence in the overall survival (OS) in patients with distal tumors. However, with regard to the disease free survival (DFS) measure, CMETH2 was independent prognostic factor. We were able to discriminate tumors with high methylation features using a transformation analysis of variables into a new computed one (CMETH2). CMETH2 has demonstrated to be a useful prognostic factor in MSI tumors. The prognostic value of CMETH2 in DFS was independent of other clinicopathological variables. The use of CMETH2 could help in the election of the best therapeutic alternative for CCR patients with MSI tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sweeney C, Boucher KM, Samowitz WS, et al. Oncogenic Tree model of somatic mutations and DNA methylation in colon tumors. Genes, Chromosomes Cancer. 2009;48:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tóth E, Serester O, Gallai M, et al. Molecular pathways and pathomorphology of colorectal cancers. Rom J Morphol Embryol. 2011;52:767–73.

    PubMed  Google Scholar 

  3. Miladi-Abdennadher I, Abdelmaksoud-Damak R, Ayadi L, et al. Aberrant methylation of HMLH1 and p16INK4a in Tunisian patients with sporadic colorectal adenocarcinoma. Biosci Rep. 2011;31(4):257–64.

    Article  CAS  PubMed  Google Scholar 

  4. Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.

    Article  CAS  PubMed  Google Scholar 

  5. Ogino S, Nosho K, Kirkner GJ, et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009;58(1):90–6.

    Article  PubMed  Google Scholar 

  6. Toyota M, Ohe-Toyota M, Ahuja N, et al. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Poc Natl Acad Sci USA. 2000;97:710–5.

    Article  CAS  Google Scholar 

  7. Dahlin AM, Palmqvist R, Henriksson ML, et al. The role of the CpG island methylator phenotype in colorectal cancer prognosis depends on microsatellite instability screening status. Clin Cancer Res. 2010;16:1845–55.

    Article  CAS  PubMed  Google Scholar 

  8. Ogino S, Meyerhardt JA, Kawasaki T. CpG island methylation, response to combination chemotherapy, and patient survival in advanced microsatellite stable colorectal carcinoma. Virchows Arch. 2007;450:529–37.

    Article  CAS  PubMed  Google Scholar 

  9. Kim JH, Shin SH, Kwon HJ, et al. Prognostic implications of CpG island hypermethylator phenotype in colorectal cancers. Virchows Arch. 2009;455:485–94.

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Hu F, Wang Y, Yao X, et al. CpG island methylator phenotype and prognosis of colorectal cancer in Northeast China. Biomed Res Int. 2014;2014:236361.

    PubMed  PubMed Central  Google Scholar 

  11. Brim H, Abu-Asab MS, Nouraie M, et al. An integrative CGH, MSI and candidate genes methylation analysis of colorectal tumors. PLoS One. 2014;9(1):e82185.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Han SW, Lee HJ, Bae JM, et al. Methylation and microsatellite status and recurrence following adjuvant FOLFOX in colorectal cancer. Int J Cancer. 2013;132(9):2209–16.

    Article  CAS  PubMed  Google Scholar 

  13. Bae JM, Kim JH, Cho NY, et al. Prognostic implication of the CpG island methylator phenotype in colorectal cancers depends on tumour location. Br J Cancer. 2013;109(4):1004–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim JH, Rhee YY, Bae JM, et al. Subsets of microsatellite-unstable colorectal cancers exhibit discordance between the CpG island methylator phenotype and MLH1 methylation status. Mod Pathol. 2013;26(7):1013–22.

    Article  CAS  PubMed  Google Scholar 

  15. Yamauchi M, Morikawa T, Kuchiba A, et al. Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut. 2012;61(6):847–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liggett WH, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 1998;16:1197–206.

    Article  CAS  PubMed  Google Scholar 

  17. Burri N, Shaw P, Bouzourene H, et al. Methylation silencing and mutations of the p14ARF and p16INK4a genes in colon cancer. Lab Invest. 2001;81:217–29.

    Article  CAS  PubMed  Google Scholar 

  18. Tommasi S, Pinto R, Petriella D, et al. Oncosuppressor methylation: a possible key role in colon metastatic progression. J Cell Physiol. 2011;226:1934–39.

    Article  CAS  PubMed  Google Scholar 

  19. Sanz-Casla MT, Maestro ML, Vidaurreta M, et al. p16 gene methylation in colorectal tumors: correlation with clinicopathological features and prognostic value. Dig Dis. 2005;23:151–5.

    Article  CAS  PubMed  Google Scholar 

  20. Kanai Y, Ushijima S, Kondo Y, et al. DNA methyltransferase expression and DNA methylation of CpG islands and peri-centromeric satellite regions in human colorectal and stomach cancer. In J Cancer. 2001;91:205–12.

    Article  CAS  Google Scholar 

  21. Ogino S, Odze RD, Kawasaki T, et al. Correlation of pathologic features with CpG island methylator phenotype (CIMP) by quantitative DNA methylation analysis in colorectal carcinoma. Am J Surg Pathol. 2006;30:1175–83.

    Article  PubMed  Google Scholar 

  22. Iacopetta B, Grieu F, Li W, et al. APC gene methylation is inversely correlated with features of the CpG island methylator phenotype in colorectal cancer. Int J Cancer. 2006;119:2272–8.

    Article  CAS  PubMed  Google Scholar 

  23. Psofaki V, Kalogera C, Tzambouras N, et al. Promoter methylation status of HMLH1, MGMT, and CDKN2A/p16 in colorectal adenomas. World J Gastroenterol. 2010;16:3553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitomi H, Fukui N, Tanaka N, et al. Aberrant p16(INK4a) methylation is a frequent event in colorectal cancers: prognostic value and relation to mRNA expression and immunoreactivity. J Cancer Res Clin Oncol. 2010;136:323–31.

    Article  CAS  PubMed  Google Scholar 

  25. Shen L, Catalano PJ, Benson III AB, et al. Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-Xuorouracil-based chemotherapy. Clin Cancer Res. 2007;13:6093–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ogino S, Cantor M, Kawasaki T, et al. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative ADN methylation analysis and prospective cohort studies. Gut. 2006;55:1000–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanaka N, Huttenhower C, Nosho K, et al. Novel application of structural equation modeling to correlation structure analysis of CpG island methylation in colorectal cancer. Am J Pathol. 2010;177:2731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shima K, Nosho K, Baba Y, et al. Prognostic significance of CDKN2A (p16) promoter methylation and loss of expression in 902 colorectal cancers: cohort study and literature review. Int J Cancer. 2011;128:1080–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahn JB, Chung WB, Maeda O, et al. DNA methylation predicts recurrence from resected stage III proximal colon cancer. Cancer. 2011;117:1847–54.

    Article  CAS  PubMed  Google Scholar 

  30. Veigl ML, Kasturi L, Olechnowicz J, et al. Biallelic inactivation of HMLH1 by epigenetic gene silencien, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci U S A. 1998;95:8698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herman JG, Umar A, Polyak K, et al. Incidence and functional consequences of HMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A. 1998;95:6870–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li X, Yao X, Wang Y, et al. MLH1 promoter methylation frequency in colorectal cancer patients and related clinicopathological and molecular features. PLoS One. 2013;8(3):e59064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar K, Brim H, Giardiello F, et al. Distinct BRAF (V600E) and KRAS mutations in high microsatellite instability sporadic colorectal cancer in African Americans. Clin Cancer Res. 2009;15(4):1155–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koinuma K, Shitoh K, Miyakura Y, et al. Mutations of BRAF are associated with extensive HMLH1 promoter methylation in sporadic colorectal carcinomas. Int J Cancer. 2004;108:237–42.

    Article  CAS  PubMed  Google Scholar 

  35. Rajagopalan H, Bardelli A, Lengauer C, et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934.

    Article  CAS  PubMed  Google Scholar 

  36. Vidaurreta M, Sanz-Casla MT, Maestro ML, et al. Microsatellite instability predicts better outcome in colorectal cancer patients. Med Clin (Barc). 2005;124(4):121–5.

    Article  Google Scholar 

  37. Maestro ML, Vidaurreta M, Sanz-Casla MT, et al. Role of the BRAF mutations in the microsatellite instability genetic pathway in sporadic colorectal cancer. Ann Surg Oncol. 2007;14(3):1229–36.

    Article  CAS  PubMed  Google Scholar 

  38. Suehiro Y, Wong CW, Chirieac LR, et al. Epigenetic-genetic interactions in the APC/WNT, RAS/RAF, and P53 pathways in colorectal carcinoma. Clin Cancer Res. 2008;14(9):2560–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bihl MP, Foerster A, Lugli A, et al. Characterization of CDKN2A(p16) methylation and impact in colorectal cancer: systematic analysis using pyrosequencing. J Transl Med. 2012;10:173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim JH, Kang GH. Molecular and prognostic heterogeneity of microsatellite-unstable colorectal cancer. World J Gastroenterol. 2014;20:4230–43.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–57.

    CAS  PubMed  Google Scholar 

  42. Veganzones S, Rafael S, Vidaurreta M, et al. p16 gene methylation in colorectal cancer patients with long-term follow-up. Rev Esp Enferm Dig. 2012;104:111–7.

    Article  Google Scholar 

  43. Muzny DM, Bainbridge MN, Chang K, et al. The cancer genome atlas network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  CAS  Google Scholar 

  44. Yamashita K, Dai T, Dai Y, et al. Genetics supersedes epigenetics in colon cancer phenotype. Cancer Cell. 2003;4:121–31.

    Article  CAS  PubMed  Google Scholar 

  45. Perucho M. Cancer of the microsatellite mutator phenotype. Biol Chem. 1996;377:675–84.

    CAS  PubMed  Google Scholar 

  46. Issa JP. Colon cancer: it’s CIN or CIMP. Clin Cancer Res. 2008;14:5939–40.

    Article  PubMed  Google Scholar 

  47. Ahuja N, Mohan AL, Li Q, et al. Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res. 1997;57:3370–4.

    CAS  PubMed  Google Scholar 

  48. Norrie MW, Hawkins NJ, Todd AV, et al. Inactivation of p16INK4a by CpG hypermethylation is not a frequent event in colorectal cancer. J Surg Oncol. 2003;84:143–50.

    Article  CAS  PubMed  Google Scholar 

  49. Barault L, Charon-Barra C, Jooste V, et al. Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res. 2008;68:8541–6.

    Article  CAS  PubMed  Google Scholar 

  50. Samadder NJ, Vierkant RA, Tillmans LS, et al. Associations between colorectal cancer molecular markers and pathways with clinicopathologic features in older women. Gastroenterology. 2013;145:348–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ward RL, Cheong K, Ku SL, et al. Adverse prognostic effect of methylation in colorectal cancer is reversed by microsatellite instability. J Clin Oncol. 2003;21:3729–36.

    Article  CAS  PubMed  Google Scholar 

  52. Samowitz WS, Sweeney C, Herrick J, et al. Cancer Res. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65:6063–9.

    Article  CAS  PubMed  Google Scholar 

  53. Lee S, Cho NY, Yoo EJ, et al. CpG island methylator phenotype in colorectal cancers: comparison of the new and classic CpG island methylator phenotype marker panels. Arch Pathol Lab Med. 2008;132:1657–65.

    CAS  PubMed  Google Scholar 

  54. Donada M, Bonin S, Barbazza R, et al. Management of stage II colon cancer—the use of molecular biomarkers for adjuvant therapy decision. BMC Gastroenterology. 2013;13:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ogino S, Shima K, Meyerhardt JA, McCleary NJ, Ng K, Hollis D, et al. Predictive and prognostic roles of BRAF mutation in stage III colon cancer: results from intergroup trial CALGB 89803. Clin Cancer Res. 2012;18:890–900.

    Article  CAS  PubMed  Google Scholar 

  56. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28:3219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Van Rijnsoever M, Elsaleh H, Joseph D, et al. CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage III colorectal cancer. Clin Cancer Res. 2003;9:2898–903.

    PubMed  Google Scholar 

  58. Jover R, Nguyen TP, Pérez-Carbonell L, et al. 5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer. Gastroenterology. 2011;140:1174–81.

    Article  CAS  PubMed  Google Scholar 

  59. An B, Kondo Y, Okamoto Y, et al. Characteristic methylation profile in CpG island methylator phenotype-negative distal colorectal cancers. Int J Cancer. 2010;127:2095–105.

    Article  CAS  PubMed  Google Scholar 

  60. Arends MJ. Pathways of colorectal carcinogenesis. Appl Immunohistochem Mol Morphol. 2013;21(2):97–102.

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Maestro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veganzones, S., Maestro, M.L., Rafael, S. et al. Combined methylation of p16 and hMLH1 (CMETH2) discriminates a subpopulation with better prognosis in colorectal cancer patients with microsatellite instability tumors. Tumor Biol. 36, 3853–3861 (2015). https://doi.org/10.1007/s13277-014-3027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-3027-1

Keywords

Navigation