Skip to main content
Log in

MicroRNA 130b enhances drug resistance in human ovarian cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) have recently been identified as a novel class of gene regulators, playing an important role in various malignancies. In the present study, we investigated the role of miRNA-130b in the development of drug resistance in ovarian cancer cells. The human ovarian carcinoma cell line A2780 and paclitaxel-resistant A2780/Taxol cells were exposed to the chemotherapeutic agent cisplatin or paclitaxel in the presence or absence of transfected miR-130b. Cell viability assays were then performed using the Cell Counting Kit-8 (CCK-8) assay. Reverse transcription polymerase chain reaction and Western blotting were used to assess the messenger RNA (mRNA) and protein expression levels of glutathione S-transferase (GST)-π, multidrug resistance (MDR)1, or P-glycoprotein (P-gp). Following transfection, we found higher expression levels of miR-130b in A2780/Taxol cells than in A2780 cells (p < 0.05). Both A2780 and A2780/Taxol cells showed decreased sensitivity to paclitaxel and cisplatin compared with mock-transfected and negative control cancer cells (p < 0.05). The mRNA expression levels of MDR1 and GST-π (p < 0.05) and the protein expression levels of P-gp and GST-π were downregulated following miR-130b transfection in comparison to mock-transfected and negative control cancer cells. Our findings suggest that miRNA-130b may be involved in the development of drug resistance in ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mantia-Smaldone GM, Edwards RP, Vlad AM. Targeted treatment of recurrent platinum-resistant ovarian cancer: current and emerging therapies. Cancer Manag Res. 2011;13:25–38.

    Google Scholar 

  2. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177(3):1053–64.

    Article  Google Scholar 

  3. Jordan SJ, Cushing-Haugen KL, Wicklund KG, Doherty JA, Rossing MA. Breast-feeding and risk of epithelial ovarian cancer. Cancer Causes Control. 2012;23(6):919–27.

    Article  CAS  Google Scholar 

  4. Ji K, Ye L, Mason MD, Jiang WG. The Kiss1/Kiss1R complex as a negative regulator of cell motility and cancer metastasis (review). Int J Mol Med. 2013;32(4):747–54.

    Article  CAS  Google Scholar 

  5. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  Google Scholar 

  6. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–82.

    Article  CAS  Google Scholar 

  7. Ishihara T, Seki N, Inoguchi S, Yoshino H, Tatarano S, et al. Expression of the tumor suppressive microRNA-23b/27b cluster is a good prognostic marker in clear cell renal cell carcinoma. J Urol. 2014. doi:https://doi.org/10.1016/j.juro.2014.07.001.

    Article  PubMed  Google Scholar 

  8. Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF, et al. MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett. 2013;339(1):107–15.

    Article  CAS  Google Scholar 

  9. Kenneth KWT, Zhan Z, Litman T, Bates SE. Regulation of ABCG2 expression at the 3′ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol. 2008;28(17):5147–61.

    Article  Google Scholar 

  10. Dai Y, Xie CH, Neis JP, Fan CY, Vural E, Spring PM. MicroRNA expression profiles of head and neck squamous cell carcinoma with docetaxel-induced multidrug resistance. Head Neck. 2011;33(6):786–91.

    Article  Google Scholar 

  11. Colangelo T, Fucci A, Votino C, Sabatino L, Pancione M, Laudanna C, et al. MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia. 2013;15:1218–31.

    Article  Google Scholar 

  12. Xia H, Qi Y, Ng SS, Chen X, Chen S, Fang M, et al. MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun. 2009;380:205–10.

    Article  CAS  Google Scholar 

  13. Chen J, Feilotter HE, Paré GC, Zhang X, Pemberton JG, Garady C, et al. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol. 2010;176:2520–9.

    Article  CAS  Google Scholar 

  14. Xu YY, Wu HJ, Ma HD, Xu LP, Huo Y, Yin LR. MicroRNA-503 suppresses proliferation and cell cycle progression of endometrioid endometrial cancer via negatively regulating cyclin D1. FEBS J. 2013;280(16):3768–79.

    Article  CAS  Google Scholar 

  15. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.

    Article  CAS  Google Scholar 

  16. Farazi TA, Spitzer JI, Morozov P, Tuschl T. MiRNAs in human cancer. J Pathol. 2011;223:102–15.

    Article  CAS  Google Scholar 

  17. Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta. 2011;12:592–601.

    Article  Google Scholar 

  18. Sanchez-Diaz PC, Hsiao T-H, Chang JC, Yue D, Tan MC, Chen H-IH, et al. De-regulated microRNAs in pediatric cancer stem cells target pathways involved in cell proliferation, cell cycle and development. PLoS One. 2013;8:e61622.

    Article  CAS  Google Scholar 

  19. Deng S, Calin GA, Croce CM, Coukos G, Zhang L. Mechanisms of microRNA deregulation in human cancer. Cell Cycle. 2008;7:2643–6.

    Article  CAS  Google Scholar 

  20. Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012;41:1897.

    Article  CAS  Google Scholar 

  21. Sotillo E, Thomas-Tikhonenko A. Shielding the messenger (RNA): microRNA-based anticancer therapies. Pharmacol Ther. 2011;131:18–32.

    Article  CAS  Google Scholar 

  22. Lai KW, Koh KX, Loh M, Tada K, Subramaniam MM, et al. MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur J Cancer. 2010;46(8):1456–63.

    Article  CAS  Google Scholar 

  23. Wang F, Xue X, Wei J, An Y, Yao J, Cai H, et al. Hsa-miR-520h down-regulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br J Cancer. 2010;103:567–74.

    Article  CAS  Google Scholar 

  24. Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol. 2009;75:1374–9.

    Article  CAS  Google Scholar 

  25. Li H, Xu H, Shen H, Li H. MicroRNA-106a modulates cisplatin sensitivity by targeting PDCD4 in human ovarian cancer cells. Oncol Lett. 2014;7(1):183–8.

    Article  CAS  Google Scholar 

  26. Li Z, Sha H, Wang J, Cai J, Xiao L, Lili Y, et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol. 2010;119:125–30.

    Article  CAS  Google Scholar 

  27. Andorfer P, Rotheneder H. Regulation of the MDR1 promoter by E2F1 and EAPP. FEBS Lett. 2013;587:1504–9.

    Article  CAS  Google Scholar 

  28. Januchowski R, Wojtowicz K, Sujka-Kordowska P, Andrzejewska M, Zabel M. MDR gene expression analysis of six drug-resistant ovarian cancer cell lines. Biomed Res Int. 2013;241763.

  29. Xing AY, Shi DB, Liu W, Chen X, Sun YL, et al. Restoration of chemosensitivity in cancer cells with MDR phenotype by deoxyribozyme, compared with ribozyme. Exp Mol Pathol. 2013;94:481–5.

    Article  CAS  Google Scholar 

  30. Popęda M, Płuciennik E, Bednarek AK. Proteins in cancer multidrug resistance. Postepy Hig Med Dosw. 2014;68:616–32.

    Article  Google Scholar 

  31. Beeghly A, Katsaros D, Chen H, Fracchioli S, Zhang Y, Massobrio M, et al. Glutathione S-transferase polymorphisms and ovarian cancer treatment and survival. Gynecol Oncol. 2006;100(2):330–7.

    Article  CAS  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie-Mei Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, C., Wang, J. & Shi, TM. MicroRNA 130b enhances drug resistance in human ovarian cancer cells. Tumor Biol. 35, 12151–12156 (2014). https://doi.org/10.1007/s13277-014-2520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2520-x

Keywords

Navigation