Skip to main content

Advertisement

Log in

Prognostic role of microRNA-31 in various cancers: a meta-analysis

  • Research Article
  • Published:
Tumor Biology

Abstract

To date, many studies have shown that microRNAs (miRNA) exhibit altered expression levels in various cancers and may play a potential role as diagnostic and prognostic biomarkers of cancers. This meta-analysis was designed to evaluate the exact role of microRNA-31 (miR-31) for survival and discuss the possibility of utilizing miR-31 to predict the prognosis of patients with various human cancers. Electronic literature databases including PubMed, Web of Science, and Embase were searched for articles published until May 2014. The articles only written in English were considered. Data were extracted from studies comparing overall survival (OS), cancer-specific survival (CSS), or postoperative survival (PS) in patients with multiple cancers, which showed higher miR-31 expression than with similar patients. Pooled hazard ratios (HRs) of miR-31 for survival and 95 % confidence intervals (CI) were calculated. Ten studies with a total of 1,648 participants were included for the meta-analysis. For OS, the pooled HRs of higher miR-31 expression in cancers indicated significant predictor poorer survival in general cancers in either univariate analysis (HR = 2.34, 95 % CI = 1.15–3.52, P < 0.05) or multivariate analysis (HR = 1.15, 95 % CI = 1.04–1.26, P < 0.05). For CSS, elevated miR-31 was also a significant predictor to general cancers in multivariate analysis (HR = 1.77, 95 % CI = 1.06–2.47, P < 0.05). And, no association was found between miR-31 expression and PS. In conclusion, the present findings indicate that high miR-31 expression is associated with poor OS and CSS in patients with general cancers and miR-31 may be a useful clinical prognostic biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  3. Okumura T, Shimada Y, Moriyama M, Takei Y, Omura T, Sekine S, et al. MicroRNA-203 inhibits the progression of esophageal squamous cell carcinoma with restored epithelial tissue architecture in vivo. Int J Oncol. 2014;44(6):1923–32. doi:10.3892/ijo.2014.2365.

    CAS  PubMed  Google Scholar 

  4. Mei Z, He Y, Feng J, Shi J, Du Y, Qian L. MicroRNA-141 promotes the proliferation of non-small cell lung cancer cells by regulating expression of PHLPP1 and PHLPP2. FEBS Lett. 2014. doi:10.1016/j.febslet.2014.06.020.

    Google Scholar 

  5. Zhang W, Liu J, Wang G. The role of microRNAs in human breast cancer progression. Tumour Biol: J Int Soc Oncodev Biol Med. 2014. doi:10.1007/s13277-014-2202-8.

    Google Scholar 

  6. Ishiguro H, Kimura M, Takeyama H. Role of microRNAs in gastric cancer. World J Gastroenterol: WJG. 2014;20(19):5694–9. doi:10.3748/wjg.v20.i19.5694.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wang N, Zhou Y, Zheng L, Li H. MiR-31 is an independent prognostic factor and functions as an oncomir in cervical cancer via targeting ARID1A. Gynecol Oncol. 2014. doi:10.1016/j.ygyno.2014.04.047.

    Google Scholar 

  8. Karnuth B, Dedy N, Spieker T, Lawlor ER, Gattenlohner S, Ranft A, et al. Differentially expressed miRNAs in Ewing sarcoma compared to mesenchymal stem cells: low miR-31 expression with effects on proliferation and invasion. PLoS One. 2014;9(3):e93067. doi:10.1371/journal.pone.0093067.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sun D, Yu F, Ma Y, Zhao R, Chen X, Zhu J, et al. MicroRNA-31 activates the RAS pathway and functions as an oncogenic MicroRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1). J Biol Chem. 2013;288(13):9508–18. doi:10.1074/jbc.M112.367763.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest. 2010;120(4):1298–309. doi:10.1172/JCI39566.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wang S, Li Q, Wang K, Dai Y, Yang J, Xue S, et al. Decreased expression of microRNA-31 associates with aggressive tumor progression and poor prognosis in patients with bladder cancer. Clin Transl Oncol: Off Publi Fed Span Oncol Soc National Cancer Inst Mex. 2013;15(10):849–54. doi:10.1007/s12094-013-1014-4.

    Article  CAS  Google Scholar 

  12. Lin PC, Chiu YL, Banerjee S, Park K, Mosquera JM, Giannopoulou E, et al. Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res. 2013;73(3):1232–44. doi:10.1158/0008-5472.CAN-12-2968.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Mitamura T, Watari H, Wang L, Kanno H, Kitagawa M, Hassan MK. microRNA 31 functions as an endometrial cancer oncogene by suppressing Hippo tumor suppressor pathway. Mol Cancer. 2014;13(1):97. doi:10.1186/1476-4598-13-97.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Yang MH, Yu J, Chen N, Wang XY, Liu XY, Wang S, et al. Elevated microRNA-31 expression regulates colorectal cancer progression by repressing its target gene SATB2. PLoS One. 2013;8(12):e85353. doi:10.1371/journal.pone.0085353.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Nosho K, Igarashi H, Nojima M, Ito M, Maruyama R, Yoshii S, et al. Association of microRNA-31 with BRAF mutation, colorectal cancer survival and serrated pathway. Carcinogenesis. 2014;35(4):776–83. doi:10.1093/carcin/bgt374.

    Article  CAS  PubMed  Google Scholar 

  16. Izquierdo L, Ingelmo-Torres M, Mallofre C, Lozano JJ, Verhasselt-Crinquette M, Leroy X, et al. Prognostic value of microRNA expression pattern in upper tract urothelial carcinoma. BJU Int. 2014;113(5):813–21. doi:10.1111/bju.12551.

    Article  CAS  PubMed  Google Scholar 

  17. Meng W, Ye Z, Cui R, Perry J, Dedousi-Huebner V, Huebner A, et al. MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2013;19(19):5423–33. doi:10.1158/1078-0432.CCR-13-0320.

    Article  CAS  Google Scholar 

  18. Tan X, Qin W, Zhang L, Hang J, Li B, Zhang C, et al. A 5-microRNA signature for lung squamous cell carcinoma diagnosis and hsa-miR-31 for prognosis. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17(21):6802–11. doi:10.1158/1078-0432.CCR-11-0419.

    Article  CAS  Google Scholar 

  19. Wang S, Jiao B, Geng S, Song J, Liang Z, Lu S. Concomitant microRNA-31 downregulation and radixin upregulation predicts advanced tumor progression and unfavorable prognosis in patients with gliomas. J Neurol Sci. 2014;338(1–2):71–6. doi:10.1016/j.jns.2013.12.019.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang T, Wang Q, Zhao D, Cui Y, Cao B, Guo L, et al. The oncogenetic role of microRNA-31 as a potential biomarker in oesophageal squamous cell carcinoma. Clin Sci (Lond). 2011;121(10):437–47. doi:10.1042/CS20110207.

    Article  CAS  Google Scholar 

  21. Yu H, Jiang L, Sun C, Guo L, Lin M, Huang J. Decreased circulating miR-375: a potential biomarker for patients with non-small-cell lung cancer. Gene. 2013. doi:10.1016/j.gene.2013.10.024.

    PubMed Central  Google Scholar 

  22. Lin RJ, Xiao DW, Liao LD, Chen T, Xie ZF, Huang WZ, et al. MiR-142-3p as a potential prognostic biomarker for esophageal squamous cell carcinoma. J Surg Oncol. 2012;105(2):175–82. doi:10.1002/jso.22066.

    Article  CAS  PubMed  Google Scholar 

  23. Liu GH, Zhou ZG, Chen R, Wang MJ, Zhou B, Li Y, et al. Serum miR-21 and miR-92a as biomarkers in the diagnosis and prognosis of colorectal cancer. Tumour Biol: J Int Soc Oncodev Biol Med. 2013;34(4):2175–81. doi:10.1007/s13277-013-0753-8.

    Article  CAS  Google Scholar 

  24. Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog. 2013;52(4):297–303. doi:10.1002/mc.21864.

    Article  CAS  PubMed  Google Scholar 

  25. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA :J Am Med Assoc. 2000;283(15):2008–12.

    Article  CAS  Google Scholar 

  26. Ma MZ, Kong X, Weng MZ, Cheng K, Gong W, Quan ZW, et al. Candidate microRNA biomarkers of pancreatic ductal adenocarcinoma: meta-analysis, experimental validation and clinical significance. J Experiment Clin Cancer Res: CR. 2013;32(1):71. doi:10.1186/1756-9966-32-71.

    Article  Google Scholar 

  27. Kim DJ, Linnstaedt S, Palma J, Park JC, Ntrivalas E, Kwak-Kim JY, et al. Plasma components affect accuracy of circulating cancer-related microRNA quantitation. J Molec Diagn: JMD. 2012;14(1):71–80. doi:10.1016/j.jmoldx.2011.09.002.

    Article  Google Scholar 

  28. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12. doi:10.1016/j.ydbio.2006.08.028.

    Article  CAS  PubMed  Google Scholar 

  29. Hong L, Han Y, Li S, Yang J, Zheng J, Zhang H, et al. The malignant phenotype-associated microRNA in gastroenteric, hepatobiliary and pancreatic carcinomas. Expert Opin Biol Ther. 2010;10(12):1693–701. doi:10.1517/14712598.2010.532482.

    Article  CAS  PubMed  Google Scholar 

  30. Hu C, Huang F, Deng G, Nie W, Huang W, Zeng X. miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1. Experiment Ther Med. 2013;6(5):1265–70. doi:10.3892/etm.2013.1311.

    CAS  Google Scholar 

  31. Zhong Z, Dong Z, Yang L, Chen X, Gong Z. MicroRNA-31-5p modulates cell cycle by targeting human mutL homolog 1 in human cancer cells. Tumour Biol:J Int Soc Oncodev Biol Med. 2013;34(3):1959–65. doi:10.1007/s13277-013-0741-z.

    Article  CAS  Google Scholar 

  32. Vire E, Curtis C, Davalos V, Git A, Robson S, Villanueva A, et al. The breast cancer oncogene EMSY represses transcription of antimetastatic microRNA miR-31. Mol Cell. 2014;53(5):806–18. doi:10.1016/j.molcel.2014.01.029.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dong Z, Zhong Z, Yang L, Wang S, Gong Z. MicroRNA-31 inhibits cisplatin-induced apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9. Cancer Lett. 2014;343(2):249–57. doi:10.1016/j.canlet.2013.09.034.

    Article  CAS  PubMed  Google Scholar 

  34. Hayes DF, Isaacs C, Stearns V. Prognostic factors in breast cancer: current and new predictors of metastasis. J Mammary Gland Biol Neoplasia. 2001;6(4):375–92.

    Article  CAS  PubMed  Google Scholar 

  35. Trikalinos TA, Hoaglin DC, Schmid CH. Empirical and simulation-based comparison of univariate and multivariate meta-analysis for binary outcomes. Rockville: AHRQ Methods for Effective Health Care; 2013.

    Google Scholar 

Download references

Acknowledgments

The present study was supported by the Department of Health of the Jiangsu Province Fund.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueming Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Hu, J., Zhang, D. et al. Prognostic role of microRNA-31 in various cancers: a meta-analysis. Tumor Biol. 35, 11639–11645 (2014). https://doi.org/10.1007/s13277-014-2492-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2492-x

Keywords

Navigation