Skip to main content

Advertisement

Log in

Caveolin-1 in oral squamous cell carcinoma microenvironment: an overview

  • Review
  • Published:
Tumor Biology

Abstract

Caveolin-1 plays an important role in the pathogenesis of oncogenic cell transformation, tumorigenesis, and metastasis. Increased expression of caveolin-1 in an array of tumors has confirmed its value in prognosis. It has been established that oxidative stress is the main cause for loss of stromal caveolin-1 via autophagy in the tumor microenvironment. In this overview, we attempt to abridge the relationship between caveolin-1 and oral squamous cell carcinoma, taking all the established theories into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bindra RS, Glazer PM. Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res. 2005;569:75–85.

    Article  CAS  PubMed  Google Scholar 

  2. Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 2007;7:139–47.

    Article  CAS  PubMed  Google Scholar 

  3. De Jaeger K, Kavanagh MC, Hill RP. Relationship of hypoxia to metastatic ability in rodent tumours. Br J Cancer. 2001;84:1280–5.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Patra SK. Dissecting lipid raft facilitated cell signalling pathways in cancer. Biochim Biophys Acta. 2008;1785(2):182–206.

    CAS  PubMed  Google Scholar 

  5. Vallejo J, Hardin CD. Caveolin-1 functions as a scaffolding protein for phosphofructokinase in the metabolic organization of vascular smooth muscle. Biochemistry. 2004;43:16224–32.

    Article  CAS  PubMed  Google Scholar 

  6. Vallejo J, Hardin CD. Expression of caveolin-1 in lymphocytes induces caveolae formation and recruitment of phosphofructokinase to the plasma membrane. FASEB J. 2005;19:586–7.

    CAS  PubMed  Google Scholar 

  7. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  8. Williams T, Lisanti M. The caveolin proteins. Genome Biol. 2004;5(3):214.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Palade GE. Fine structure of blood capillaries. J Appl Phys. 1953;24:1424.

    Google Scholar 

  10. Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol. 1955;1:445–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  12. Staubach S, Hanisch FG. Lipid rafts: signalling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics. 2011;8(2):263–77.

    Article  CAS  PubMed  Google Scholar 

  13. Razani B, Lisanti MP. Caveolins and caveolae: molecular and functional relationships. Exp Cell Res. 2001;271:36–44.

    Article  CAS  PubMed  Google Scholar 

  14. Li WP, Liu P, Pilcher BK, Anderson RG. Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci. 2001;114:1397–408.

    CAS  PubMed  Google Scholar 

  15. Uittenbogaard A, Ying Y, Smart EJ. Characterization of a cytosolic heat-shock protein–caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem. 1998;273:6525–32.

    Article  CAS  PubMed  Google Scholar 

  16. Liu P, Li WP, Machleidt T, Anderson RG. Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nat Cell Biol. 1999;1:369–75.

    Article  CAS  PubMed  Google Scholar 

  17. Hansen CG, Nichols BJ. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol. 2010;20:177–86.

    Article  CAS  PubMed  Google Scholar 

  18. Drab M, Verkade P, Elger M, et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science. 2001;293:2449–52.

    Article  CAS  PubMed  Google Scholar 

  19. Aoki MN, Amarante MK, Oda JM, Watanabe MA. Caveolin involvement and modulation in breast cancer. Mini Rev Med Chem. 2011;11(13):1143–52.

    Article  CAS  PubMed  Google Scholar 

  20. Razani B, Woodman SE, Lisanti MP. Caveolae: from cell biology to animal physiology. Pharmacol Rev. 2002;54(3):431–67.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Iwabuchi K, Nunomura S, Hakomori S. Effect of synthetic sialyl 2-1 sphingosine and other glycosylsphingosines on the structure and function of the “glycosphingolipid signaling domain (GSD)” in mouse melanoma B16 cells. Biochemistry. 2000;39(10):2459–68.

    Article  CAS  PubMed  Google Scholar 

  22. Stan RV. Structure of caveolae. Biochim Biophys Acta. 2005;1746:334–48.

    Article  CAS  PubMed  Google Scholar 

  23. Frank PG, Cheung MW-C, Pavlides S, Llaverias G, Park DS, Lisanti MP. Caveolin-1 and regulation of cellular cholesterol homeostasis. Am J Physiol Heart Circ Physiol. 2006;291:H677–86.

    Article  CAS  PubMed  Google Scholar 

  24. Frank PG, Pavlides S, Cheung MW-C, Daumer K, Lisanti MP. Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol. 2008;295:C242–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol. 2005;288:494–506.

    Article  Google Scholar 

  26. Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol. 2012;7:423–67.

    Article  CAS  PubMed  Google Scholar 

  27. Razani B, Altschuler Y, Zhu L, Pestell RG, Mostov KE, Lisanti MP. Caveolin-1 expression is down regulated in cells transformed by the human papilloma virus in a p53-dependent manner. Replacement of caveolin-1 expression suppresses HPV-mediated cell transformation. Biochemistry. 2000;39:13916–24.

    Article  CAS  PubMed  Google Scholar 

  28. Lee SW, Reimer CL, Oh P, Campbell DB, Schnitzer JE. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene. 1998;16:1391–7.

    Article  CAS  PubMed  Google Scholar 

  29. Razani B, Zhang XL, Bitzer M, von Gersdorff G, Bottinger EP, Lisanti MP. Caveolin-1 regulates transforming growth factor (TGF)beta/SMAD signalling through an interaction with the TGFbeta type I receptor. J Biol Chem. 2001;276:6727–38.

    Article  CAS  PubMed  Google Scholar 

  30. Pavlides S, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8(23):3984–4001.

    Article  CAS  PubMed  Google Scholar 

  31. Br E, Xiangbin X, Christoph R, et al. Differential expression and function of caveolin-1 in human gastric cancer progression. Cancer Res. 2007;67:8519–26.

    Article  Google Scholar 

  32. Alshenawy HA, Ali MA. Differential caveolin-1 expression in colon carcinoma and its relation to E-cadherin-β-catenin complex. Ann Diagn Pathol. 2013;17(6):476–82.

    Article  PubMed  Google Scholar 

  33. Garcı’a AG, del Pozo MA. Caveolin-1 in cell polarization and directional migration. Eur J Cell Biol. 2008;87:641–7.

    Article  Google Scholar 

  34. Glenney Jr JR. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem. 1989;264(34):20163–6.

    CAS  PubMed  Google Scholar 

  35. Tekpli X, Holme JA, Sergent O, Lagadic-Gossmann D. Role for membrane remodelling in cell death: implication for health and disease. Toxicology. 2013;304(8):141–57.

    Article  CAS  PubMed  Google Scholar 

  36. Lu Z, Ghosh S, Wang Z, Hunter T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell. 2003;4:499–515.

    Article  CAS  PubMed  Google Scholar 

  37. Liscovitch M, Burgermeister E, Jain N, Ravid D, Shatz M, Tencer L. Caveolin and cancer: a complex relationship. In: Mattson MP, editor. Membrane microdomain signaling lipid rafts in biology and medicine. Totowa: Humana Press; 2005. p. 161–90.

    Chapter  Google Scholar 

  38. Li S, Okamoto T, Chun M, et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem. 1995;270:15693–701.

    Article  CAS  PubMed  Google Scholar 

  39. Lee H, Volonte D, Galbiati F, et al. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol. 2000;14:1750–75.

    Article  CAS  PubMed  Google Scholar 

  40. Podar K, Tai YT, Cole CE, et al. Essential role of caveolae in interleukin-6-and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem. 2003;278:5794–801.

    Article  CAS  PubMed  Google Scholar 

  41. Schlege A, Arvan P, Lisanti MP. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem. 2001;276:4398–408.

    Article  Google Scholar 

  42. Fielding CJ, Bist A, Fielding PE. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc Natl Acad Sci U S A. 1997;94:3753–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Goetz JG, Lajoie P, Wiseman SM, Nabi IR. Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev. 2008;27:715–35.

    Article  CAS  PubMed  Google Scholar 

  44. Cerezo A, Guadamillas MC, Goetz JG, et al. The absence of caveolin-1 increases proliferation and anchorage-independent growth by a Rac-dependent, Erkin dependent mechanism. Mol Cell Biol. 2009;29:5046–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Sun J, Gao J, Hu JB, et al. Expression of Cav-1 in tumour cells, rather than in stromal tissue, may promote cervical squamous cell carcinoma proliferation, and correlates with high-risk HPV infection. Oncol Rep. 2012;27(6):1733–40.

    PubMed  Google Scholar 

  46. Miotti ESS, Mazzi M, De Santis G, Canevari S, Tomassetti A. Binding of nuclear caveolin-1 to promoter elements of growth-associated genes in ovarian carcinoma cells. Exp Cell Res. 2007;313:1307–17.

    Article  PubMed  Google Scholar 

  47. Di Vizio D, Morello M, Sotgia F, Pestell RG, Freeman MR, Lisanti MP. An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation. Cell Cycle. 2009;8:2420–4.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Witkiewicz AK, Dasgupta A, Nguyen KH, et al. Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biol Ther. 2009;8:1167–75.

    Article  Google Scholar 

  49. Witkiewicz AK, Dasgupta A, Sotgia F, et al. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol. 2009;174:2023–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Ma X, Liu L, Nie W, et al. Prognostic role of caveolin in breast cancer: a meta analysis. Breast. 2013;22(4):462–9.

    Article  PubMed  Google Scholar 

  51. Kannan A, Krishnan A, Ali M, Subramaniam S, Halagowder D, Sivasithamparam ND. Caveolin-1 promotes gastric cancer progression by up-regulating epithelial to mesenchymal transition by crosstalk of signalling mechanisms under hypoxic condition. Eur J Cancer. 2014;50(1):204–15.

    Article  CAS  PubMed  Google Scholar 

  52. Taira J, Higashimoto Y. Caveolin-1 interacts with protein phosphatase 5 and modulates its activity in prostate cancer cells. Biochem Biophys Res Commun. 2013;431(4):724–8.

    Article  CAS  PubMed  Google Scholar 

  53. Felicetti F, Parolini I, Bottero L, et al. Caveolin-1 tumor-promoting role in human melanoma. Int J Cancer. 2009;125(7):1514–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Steffens S, Schrader AJ, Blasig H, et al. Caveolin 1 protein expression in renal cell carcinoma predicts survival. BMC Urol. 2011;11:25.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Lavie Y, Fiucci G, Liscovitch M. Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem. 1998;273:32380–3.

    Article  CAS  PubMed  Google Scholar 

  56. Sainz-Jaspeado M, Martin-Liberal J, Lagares-Tena L, Mateo-Lozano S, del GX M, Tirado OM. Caveolin-1 in sarcomas: friend or foe? Oncotarget. 2011;2(4):305–12.

    PubMed Central  PubMed  Google Scholar 

  57. Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, et al. Understanding the “lethal” drivers of tumor-stroma co-evolution. Emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor microenvironment. Can Biol Ther. 2010;10(6):537–42.

    Article  CAS  Google Scholar 

  58. Martinez-Outschoorn UE, Trimmer C, Lin Z, et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival. Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle. 2010;9(17):3515–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Bakhshi FR, Shinin V, Mao M, et al. Role of oxidative stress-induced caveolin-1 S nitrosylation, ubiquitination, and degradation in endothelial cell dedifferentiation and idiopathic pulmonary arterial hypertension. Nitric Oxide. 2013;31(1):S42.

    Article  Google Scholar 

  60. Sanguinetti AR, Mastick CC. c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell Signal. 2003;15(3):289–98.

    Article  CAS  PubMed  Google Scholar 

  61. Rungtabnapa P, Nimmannit U, Halim H, Rojanasakul Y, Chanvorachote P. Hydrogen peroxide inhibits non-small cell lung cancer cell anoikis through the inhibition of caveolin-1 degradation. Am J Physiol Cell Physiol. 2011;300:C235–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Hung KF, Lin SC, Liu CJ, Chang CS, Chang KW, Kao SY. The biphasic differential expression of the cellular membrane protein, caveolin-1, in oral carcinogenesis. J Oral Pathol Med. 2003;32(8):461–7.

    Article  CAS  PubMed  Google Scholar 

  63. Han SE, Park KH, Lee G, Huh YJ, Min BM. Mutation and aberrant expression of caveolin-1 in human oral squamous cell carcinomas and oral cancer cell lines. Int J Oncol. 2004;24(2):435–40.

    CAS  PubMed  Google Scholar 

  64. Xue J, Chen H, Diao L, Chen X, Xia D. Expression of caveolin-1 in tongue squamous cell carcinoma by quantum dots. Eur J Histochem. 2010;54(2):e20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Bau DT, Tsai MH, Tsou YA, et al. The association of caveolin-1 genotypes with oral cancer susceptibility in Taiwan. Ann Surg Oncol. 2011;18(5):1431–8.

    Article  PubMed  Google Scholar 

  66. Nakatani K, Wada T, Nakamura M, Uzawa K, Tanzawa H, Fujita S. Expression of caveolin-1 and its correlation with cisplatin sensitivity in oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2005;131(7):445–52.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang H, Su L, Müller S, et al. Restoration of caveolin-1 expression suppresses growth and metastasis of head and neck squamous cell carcinoma. Br J Cancer. 2008;99(10):1684–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Masuelli L, Budillon A, Marzocchella L, et al. Caveolin-1 overexpression is associated with simultaneous abnormal expression of the E-cadherin/α-β catenins complex and multiple ErbB receptors and with lymph nodes metastasis in head and neck squamous cell carcinomas. J Cell Physiol. 2012;227(9):3344–53.

    Article  CAS  PubMed  Google Scholar 

  69. Masood R, Hochstim C, Cervenka B, et al. A novel orthotopic mouse model of head and neck cancer and lymph node metastasis. Oncogenesis. 2013;9:2:e68.

    Google Scholar 

  70. Nohata N, Hanazawa T, Kikkawa N, et al. Caveolin-1 mediates tumor cell migration and invasion and its regulation by miR-133a in head and neck squamous cell carcinoma. Int J Oncol. 2011;38:209–17.

    CAS  PubMed  Google Scholar 

  71. Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A. 2003;100:8621–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle. 2010;9(10):1960–71.

    Article  CAS  PubMed  Google Scholar 

  73. Perkins ND, Gilmore TD. Good cop, bad cop: the different faces of NFkappaB. Cell Death Differ. 2006;13:759–72.

    Article  CAS  PubMed  Google Scholar 

  74. Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun. 2005;338:617–26.

    Article  CAS  PubMed  Google Scholar 

  75. Bellot G, Garcia-Medina R, Gounon P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29:2570–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, et al. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle. 2010;9:2423–33.

    Article  CAS  PubMed  Google Scholar 

  77. Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126:107–20.

    Article  CAS  PubMed  Google Scholar 

  78. Wu H, Jiang H, Lu D, et al. Effect of simvastatin on glioma cell proliferation, migration, and apoptosis. Neurosurgery. 2009;65:1087–96.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Podar K, Tai YT, Cole CE, et al. Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res. 2004;64:7500–6.

    Article  CAS  PubMed  Google Scholar 

  80. Sáinz-Jaspeado M, Lagares-Tena L, Lasheras J, et al. Caveolin-1 modulates the ability of Ewing’s sarcoma to metastasize. Mol Cancer Res. 2010;8:1489–500.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Gratton JP, Lin MI, Yu J, et al. Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell. 2003;4:31–9.

    Article  CAS  PubMed  Google Scholar 

  82. Liscovitch M, Lavie Y. Multidrug resistance: a role for cholesterol efflux pathways? Trends Biochem Sci. 2000;25:530–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Akhil A. Shankar, Assistant Professor from the Y.M.T. Dental College & Hospital and Dr. Niharika Swain, Assistant Professor, M.G.M. Dental College & Hospital for their support and critical evaluation of the manuscript.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samapika Routray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Routray, S. Caveolin-1 in oral squamous cell carcinoma microenvironment: an overview. Tumor Biol. 35, 9487–9495 (2014). https://doi.org/10.1007/s13277-014-2482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2482-z

Keywords

Navigation