Skip to main content

Advertisement

Log in

NBS1 Glu185Gln polymorphism and susceptibility to urinary system cancer: a meta-analysis

  • Research Article
  • Published:
Tumor Biology

Abstract

A number of studies have investigated the association between the NBS1 Glu185Gln (rs1805794, 8360 G > C) polymorphism and risk for urinary system cancer including bladder cancer, prostate cancer, and renal cell cancer; however, the findings are conflicting. We conducted a meta-analysis focusing on eight published studies with 3,542 cases and 4,210 controls to derive a more precise evaluation of the relationship between the NBS1 Glu185Gln polymorphism and urinary system cancer susceptibility. Overall, the NBS1 Glu185Gln polymorphism was significantly related to increased risk for urinary system cancer (homozygous model: odds ratio (OR) = 1.23, 95 % confidence interval (95 % CI) = 1.05–1.44, p = 0.011; heterozygous model: OR = 1.14, 95 % CI = 1.04–1.26, p = 0.008; dominant model: OR = 1.16, 95 % CI = 1.05–1.27, p = 0.002; and Gln vs. Glu: OR = 1.12, 95 % CI = 1.04–1.20, p = 0.002) and further stratification analysis indicated an increased risk for bladder cancer (heterozygous model: OR = 1.13, 95 % CI = 1.02–1.26, p = 0.022; dominant model: OR = 1.14, 95 % CI = 1.03–1.26, p = 0.014; and Gln vs. Glu: OR = 1.09, 95 % CI = 1.01–1.18, p = 0.023) and Caucasian populations (homozygous model: OR = 1.33, 95 % CI = 1.11–1.59, p = 0.002; heterozygous model: OR = 1.16, 95 % CI = 1.04–1.30, p = 0.009; dominant model: OR = 1.19, 95 % CI = 1.07–1.32, p = 0.001; and Gln vs. Glu: OR = 1.15, 95 % CI = 1.06–1.25, p < 0.001). Despite some limitations, this meta-analysis established some solid statistical evidence for the association between NBS1 Glu185Gln polymorphism and increased risk for urinary system cancer, especially for bladder cancer, but more well-designed prospective studies are needed to further verify our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  2. Mohrenweiser HW, Wilson 3rd DM, Jones IM. Challenges and complexities in estimating both the functional impact and the disease risk associated with the extensive genetic variation in human DNA repair genes. Mutat Res. 2003;526(1–2):93–125.

    Article  CAS  PubMed  Google Scholar 

  3. Wood RD et al. Human DNA repair genes. Science. 2001;291(5507):1284–9.

    Article  CAS  PubMed  Google Scholar 

  4. Kuschel B et al. Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet. 2002;11(12):1399–407.

    Article  CAS  PubMed  Google Scholar 

  5. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  6. van Gent DC, Hoeijmakers JH, Kanaar R. Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet. 2001;2(3):196–206.

    Article  PubMed  Google Scholar 

  7. Yang L et al. A functional polymorphism at microRNA-629-binding site in the 3′-untranslated region of NBS1 gene confers an increased risk of lung cancer in southern and eastern Chinese population. Carcinogenesis. 2012;33(2):338–47.

    Article  CAS  PubMed  Google Scholar 

  8. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis. 2002;23(5):687–96.

    Article  CAS  PubMed  Google Scholar 

  9. Lu J et al. Polymorphisms and haplotypes of the NBS1 gene are associated with risk of sporadic breast cancer in non-Hispanic white women <or=55 years. Carcinogenesis. 2006;27(11):2209–16.

    Article  CAS  PubMed  Google Scholar 

  10. Kobayashi J et al. NBS1 and its functional role in the DNA damage response. DNA Repair (Amst). 2004;3(8–9):855–61.

    Article  CAS  Google Scholar 

  11. Matsuura S et al. Nijmegen breakage syndrome and DNA double strand break repair by NBS1 complex. Adv Biophys. 2004;38(Complete):65–80.

    Article  CAS  Google Scholar 

  12. Paull TT, Lee JH. The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM. Cell Cycle. 2005;4(6):737–40.

    Article  CAS  PubMed  Google Scholar 

  13. Matsuura S et al. Positional cloning of the gene for Nijmegen breakage syndrome. Nat Genet. 1998;19(2):179–81.

    Article  CAS  PubMed  Google Scholar 

  14. Varon R et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell. 1998;93(3):467–76.

    Article  CAS  PubMed  Google Scholar 

  15. Dumon-Jones V et al. Nbn heterozygosity renders mice susceptible to tumor formation and ionizing radiation-induced tumorigenesis. Cancer Res. 2003;63(21):7263–9.

    CAS  PubMed  Google Scholar 

  16. Zhang Y, Zhou J, Lim CU. The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control. Cell Res. 2006;16(1):45–54.

    Article  PubMed  Google Scholar 

  17. Park SL et al. Associations between NBS1 polymorphisms, haplotypes and smoking-related cancers. Carcinogenesis. 2010;31(7):1264–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Smith TR et al. Polygenic model of DNA repair genetic polymorphisms in human breast cancer risk. Carcinogenesis. 2008;29(11):2132–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Auranen A et al. Polymorphisms in DNA repair genes and epithelial ovarian cancer risk. Int J Cancer. 2005;117(4):611–8.

    Article  CAS  PubMed  Google Scholar 

  20. Loizidou MA et al. Genetic variation in genes interacting with BRCA1/2 and risk of breast cancer in the Cypriot population. Breast Cancer Res Treat. 2010;121(1):147–56.

    Article  CAS  PubMed  Google Scholar 

  21. Silva SN et al. Breast cancer risk and common single nucleotide polymorphisms in homologous recombination DNA repair pathway genes XRCC2, XRCC3, NBS1 and RAD51. Cancer Epidemiol. 2010;34(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  22. Zienolddiny S et al. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis. 2006;27(3):560–7.

    Article  CAS  PubMed  Google Scholar 

  23. Lan Q et al. Smoky coal exposure, NBS1 polymorphisms, p53 protein accumulation, and lung cancer risk in Xuan Wei. China Lung Cancer. 2005;49(3):317–23.

    Article  Google Scholar 

  24. Sanyal S et al. Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis. 2004;25(5):729–34.

    Article  CAS  PubMed  Google Scholar 

  25. Figueroa JD et al. Evaluation of genetic variation in the double-strand break repair pathway and bladder cancer risk. Carcinogenesis. 2007;28(8):1788–93.

    Article  CAS  PubMed  Google Scholar 

  26. Choudhury A et al. Analysis of variants in DNA damage signalling genes in bladder cancer. BMC Med Genet. 2008;9:69.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Broberg K et al. Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis. 2005;26(7):1263–71.

    Article  CAS  PubMed  Google Scholar 

  28. Wu X et al. Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet. 2006;78(3):464–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Matullo G et al. DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis. 2006;27(5):997–1007.

    Article  CAS  PubMed  Google Scholar 

  30. Hebbring SJ et al. Role of the Nijmegen breakage syndrome 1 gene in familial and sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev. 2006;15(5):935–8.

    Article  CAS  PubMed  Google Scholar 

  31. Margulis V et al. Genetic susceptibility to renal cell carcinoma: the role of DNA double-strand break repair pathway. Cancer Epidemiol Biomarkers Prev. 2008;17(9):2366–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.

    CAS  PubMed  Google Scholar 

  33. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  34. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    Article  PubMed  Google Scholar 

  35. Egger M et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Silva J et al. DNA repair system and prostate cancer progression: the role of NBS1 polymorphism (rs1805794). DNA Cell Biol. 2012;31(7):1182–6.

    Article  CAS  PubMed  Google Scholar 

  37. He YZ et al. NBS1 Glu185Gln polymorphism and cancer risk: update on current evidence. Tumour Biol. 2014;35(1):675–87.

    Article  CAS  PubMed  Google Scholar 

  38. Lu M et al. Association between the NBS1 E185Q polymorphism and cancer risk: a meta-analysis. BMC Cancer. 2009;9:124.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Additional information

Ying Zhang and Yu-Shan Huang contributed equally to this work and should be considered as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Huang, YS., Lin, WQ. et al. NBS1 Glu185Gln polymorphism and susceptibility to urinary system cancer: a meta-analysis. Tumor Biol. 35, 10723–10729 (2014). https://doi.org/10.1007/s13277-014-2346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2346-6

Keywords

Navigation