Skip to main content

Advertisement

Log in

BTG1 underexpression is an independent prognostic marker in esophageal squamous cell carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

To determine the expression and function of B cell translocation gene 1 (BTG1) in esophageal carcinoma, esophageal samples were taken from cancer lesions (n = 74) and adjacent normal tissue (n = 34) in esophageal cancer patients immediately after endoscopic biopsy. BTG1 expression was determined by immunohistochemistry and Western blotting. The effect of BTG1 overexpression was examined in vitro utilizing a human esophageal cancer cell line ECA-109 stably transfected with a recombinant lentivirus (LeBTG1 cells) and compared to empty vector-transfected controls (LeEmpty). BTG1 overexpression was verified by real-time reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot. The expression of proteins involved in cell cycle regulation (cyclin D1) and apoptosis (Bcl-2) and cell migration (MMP-9) in LeBTG1 cells was analyzed by Western blot. The effect of BTG1 overexpression on cell viability and proliferation was assessed by an MTT assay in LeBTG1 and LeEmpty cells. Flow cytometric analyses were used to evaluate the effect of BTG1 expression on cell cycle distribution and apoptosis. The migration and invasion potential of LeBTG1 cells was examined by plating cells in Matrigel-coated chambers. The level of BTG1 protein expression was found to be significantly lower in esophageal cancer tissue than normal tissues (P < 0.05). Decreased expression of BTG1 was significantly correlated with lymph node metastasis, clinical stage, and histological grade of patients with esophageal cancer (P < 0.05). Meanwhile, loss of BTG1 expression correlated significantly with poor overall survival time by Kaplan-Meier analysis (P < 0.05). The result of biological function shown that Eca-109 cell-transfected BTG1 had a lower survival fraction, higher percentage of the G0/G1 phases, higher cell apoptosis, significant decrease in migration and invasion, and lower cylin D1, Bcl-2, and MMP-9 protein expression compared with Eca-109 cell-untransfected BTG1 (P < 0.05). Reduced BTG1 expression is associated with increased disease severity, suggesting it is a negative regulator of esophageal cancer and can serve as a prognostic indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agathocleous M, Harris WA. Metabolism in physiological cell proliferation and differentiation. Trends Cell Biol. 2013;23:484–92.

    Article  CAS  PubMed  Google Scholar 

  2. Hofmockel G. Molecular genetic principles of tumor development and progression. Urologe A. 2000;39:212–3.

    Article  CAS  PubMed  Google Scholar 

  3. Shibata D, Aaltonen LA. Genetic predisposition and somatic diversification in tumor development and progression. Adv Cancer Res. 2001;80:83–114.

    Article  CAS  PubMed  Google Scholar 

  4. Lee EY, Muller WJ. Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol. 2010;2:a003236.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Okuyama T, Maehara Y, Kabashima A, Takahashi I, Kakeji Y, Sugimachi K. Combined evaluation of expressions of p53 and p21 proteins as prognostic factors for patients with gastric carcinoma. Oncology. 2002;63:353–61.

    Article  CAS  PubMed  Google Scholar 

  6. Vadgama JV, Scuric Z, Chakrabarti R, Marzo E, Shen D, Wu Y. Insulin-like growth factor I differentially regulates the expression of HIRF1/hCAF1 and BTG1 genes in human MCF-7 breast cancer cells. Int J Mol Med. 2006;18:129–39.

    CAS  PubMed  Google Scholar 

  7. Cortes U, Moyret-Lalle C, Falette N, Duriez C, Ghissassi FE, Barnas C, et al. BTG gene expression in the p53-dependent and -independent cellular response to DNA damage. Mol Carcinog. 2000;27:57–64.

    Article  CAS  PubMed  Google Scholar 

  8. Winkler GS. The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol. 2010;222:66–72.

    Article  CAS  PubMed  Google Scholar 

  9. Rouault JP, Rimokh R, Tessa C, Paranhos G, Ffrench M, Duret L, et al. BTG1, a member of a new family of antiproliferative genes. EMBO J. 1992;11:1663–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Rouault JP, Falette N, Guéhenneux F, Guillot C, Rimokh R, Wang Q, et al. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet. 1996;14:482–6.

    Article  CAS  PubMed  Google Scholar 

  11. Matsuda S, Rouault J, Magaud J, Berthet C. In search of a function for the TIS21/PC3/BTG1/TOB family. FEBS Lett. 2001;497:67–72.

    Article  CAS  PubMed  Google Scholar 

  12. Sheng SH, Zhao CM, Sun GG. BTG1 expression correlates with the pathogenesis and progression of breast carcinomas. Tumour Biol. 2014;35:3317–26.

    Article  CAS  PubMed  Google Scholar 

  13. Sun GG, Lu YF, Cheng YJ, Hu WN. The expression of BTG1 is downregulated in NSCLC and possibly associated with tumor metastasis. Tumour Biol. 2014;35(4):2949–57.

    Article  CAS  PubMed  Google Scholar 

  14. Turashvili G, Bouchal J, Ehrmann J, Fridman E, Skarda J, Kolar Z. Novel immunohistochemical markers for the differentiation of lobular and ductal invasive breast carcinomas. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2007;151:59–64.

    Article  CAS  PubMed  Google Scholar 

  15. Ranganathan V, De PK. Western blot of proteins from Coomassie-stained poly-acrylamide gels. Anal Biochem. 1996;234:102–4.

    Article  CAS  PubMed  Google Scholar 

  16. van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237–45.

    Article  PubMed  Google Scholar 

  17. Rasola A, Geuna M. A flow cytometry assay simultaneously detects independent apoptotic parameters. Cytometry. 2001;45:151–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschläger M, et al. In vitro cell migration and invasion assays. Mutat Res. 2013;752:10–24.

    Article  CAS  PubMed  Google Scholar 

  19. Richards RJ. Responsibility for statistical analyses. Endocr Pract. 2003;9:329.

    PubMed  Google Scholar 

  20. Zhu R, Zou ST, Wan JM, Li W, Li XL, Zhu W. BTG1 inhibits breast cancer cell growth through induction of cell cycle arrest and apoptosis. Oncol Rep. 2013;30:2137–44.

    CAS  PubMed  Google Scholar 

  21. Manjili MH, Najarian K, Wang XY. Signatures of tumor-immune interactions as biomarkers for breast cancer prognosis. Future Oncol. 2012;8:703–11.

    Article  CAS  PubMed  Google Scholar 

  22. Martinez-Outschoorn UE, Pavlides S, Sotgia F, Lisanti MP. Mitochondrial biogenesis drives tumor cell proliferation. Am J Pathol. 2011;178:1949–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Koff A, Cross F, Fisher A, Schumacher J, Leguellec K, Philippe M, et al. Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell. 1991;66:1217–28.

    Article  CAS  PubMed  Google Scholar 

  24. Tirone F. The gene PC3 (TIS21/BTG2), prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J Cell Physiol. 2001;187:155–65.

    Article  CAS  PubMed  Google Scholar 

  25. Nicholson DW, Thornberry NA. Apoptosis. Life and death decisions. Science. 2003;299:214–5.

    Article  CAS  PubMed  Google Scholar 

  26. Corjay MH, Kearney MA, Munzer DA, Diamond SM, Stoltenborg JK. Antiproliferative gene BTG1 is highly expressed in apoptotic cells in macrophage-rich areas of advanced lesions in Watanabe heritable hyperlipidemic rabbit and human. Lab Invest. 1998;78:847–58.

    CAS  PubMed  Google Scholar 

  27. Lee H, Cha S, Lee MS, Cho GJ, Choi WS, Suk K. Role of antiproliferative B cell translocation gene-1 as an apoptotic sensitizer in activation-induced cell death of brain microglia. J Immunol. 2003;171:5802–11.

    Article  CAS  PubMed  Google Scholar 

  28. Nahta R, Yuan LX, Fiterman DJ, Zhang L, Symmans WF, Ueno NT, et al. B cell translocation gene 1 contributes to antisense Bcl-2-mediated apoptosis in breast cancer cells. Mol Cancer Ther. 2006;5:1593–601.

    Article  CAS  PubMed  Google Scholar 

  29. Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science. 2002;296:1046–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Alok C, Bharat B. Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Phamacol. 2002;64:883–8.

    Article  Google Scholar 

  31. Virós D, Camacho M, Zarraonandia I, García J, Quer M, Vila L, et al. Prognostic role of MMP-9 expression in head and neck carcinoma patients treated with radiotherapy orchemoradiotherapy. Oral Oncol. 2013;49:322–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. N. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G.G., Wang, Y.D., Cheng, Y.J. et al. BTG1 underexpression is an independent prognostic marker in esophageal squamous cell carcinoma. Tumor Biol. 35, 9707–9716 (2014). https://doi.org/10.1007/s13277-014-2245-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2245-x

Keywords

Navigation