Skip to main content

Advertisement

Log in

Correlations of common polymorphism of EVI-1 gene targeted by miRNA-206/133b with the pathogenesis of breast cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

The aim of this study was to identify the correlations of a common polymorphism (rs6774494 A > G) in the EVI-1 gene targeted by micro-RNA (miRNA)-206/133b with the pathogenesis of breast cancer (BC). A total of 196 unrelated ethnic Han Chinese women diagnosed with primary BC were consecutively recruited and 200 healthy controls were randomly selected from the same population-based cohort. Direct PCR sequencing assay was used to detection of rs6774494 A > G polymorphism in the EVI-1 gene. Real-time quantitative PCR (RT-PCR) analysis was performed to verify the alterations of the EVI1 messenger RNA (mRNA) levels. Kaplan–Meier analysis was used to investigate and to estimate the survival outcomes for each endpoint. All statistical analyses were performed with SPSS software (version 18.0, SPSS, Chicago, IL). Our results demonstrated that the carriers of EVI-1 AG genotype were more likely to develop BC when compared with the EVI-1 GG genotype (P = 0.034, OR = 1.26, 95% CI = 1.02 ∼ 1.57). In addition, it was found that patients with the G (AG + GG) allele of EVI-1 genetic variants were associated with higher risk of BC compared with the EVI-1 AA genotype (OR = 1.26, 95% CI = 1.02 ∼ 1.54, P = 0.028). The results of a subgroup analysis stratified by menopause revealed that in female post-menopause subgroup patients with the EVI-1 G allele were correlated with a higher risk of BC than those with the EVI-1 AA genotype (OR = 1.31, 95% CI = 1.00 ∼ 1.72, P = 0.054). Kaplan–Meier analyses suggested that carriers of the G allele (AG + GG) were associated with poorer overall survival (OS) and progression-free survival (PFS) compared with those with AA genotype (OS P = 0.042; PFS P = 0.036, respectively). The correlation analysis showed that EVI-1 mRNA levels were negatively associated with miRNA-206/133b levels in the carriers of the G allele (AG + GG) (r = −1.274, P < 0.05). Our findings provide evidence that the EVI-1 rs6774494 G > A polymorphism targeted by miRNA-206/133b may contribute to the pathogenesis of BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.

    Article  PubMed  Google Scholar 

  4. Shulman LN, Willett W, Sievers A, Knaul FM. Breast cancer in developing countries: Opportunities for improved survival. J Oncol. 2010;2010:595167.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Mavaddat N, Antoniou AC, Easton DF, Garcia-Closas M. Genetic susceptibility to breast cancer. Mol Oncol. 2010;4(3):174–91.

    Article  CAS  PubMed  Google Scholar 

  6. Travis RC, Reeves GK, Green J, Bull D, Tipper SJ, Baker K, et al. Gene-environment interactions in 7610 women with breast cancer: Prospective evidence from the Million Women Study. Lancet. 2010;375(9732):2143–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dal Maso L, Zucchetto A, Talamini R, Serraino D, Stocco CF, Vercelli M, et al. Effect of obesity and other lifestyle factors on mortality in women with breast cancer. Int J Cancer. 2008;123(9):2188–94.

    Article  CAS  PubMed  Google Scholar 

  8. Nelson HD, Zakher B, Cantor A, Fu R, Griffin J, O’Meara ES, et al. Risk factors for breast cancer for women aged 40 to 49 years: a systematic review and meta-analysis. Ann Intern Med. 2012;156(9):635–48.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kontorovich T, Levy A, Korostishevsky M, Nir U, Friedman E. Single nucleotide polymorphisms in miRNA binding sites and miRNA genes as breast/ovarian cancer risk modifiers in Jewish high-risk women. Int J Cancer. 2010;127(3):589–97.

    Article  CAS  PubMed  Google Scholar 

  10. Roberts MR, Shields PG, Ambrosone CB, Nie J, Marian C, Krishnan SS, et al. Single-nucleotide polymorphisms in DNA repair genes and association with breast cancer risk in the web study. Carcinogenesis. 2011;32(8):1223–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9(2):102–14.

    Article  CAS  PubMed  Google Scholar 

  13. Gu S, Jin L, Zhang F, Sarnow P, Kay MA. Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. Nat Struct Mol Biol. 2009;16(2):144–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008;283(44):29897–903.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wen D, Li S, Ji F, Cao H, Jiang W, Zhu J, et al. miR-133b acts as a tumor suppressor and negatively regulates FGFR1 in gastric cancer. Tumour Biol. 2013;34(2):793–803.

    Article  CAS  PubMed  Google Scholar 

  16. Liu L, Shao X, Gao W, Zhang Z, Liu P, Wang R, et al. MicroRNA-133b inhibits the growth of non-small-cell lung cancer by targeting the epidermal growth factor receptor. FEBS J. 2012;279(20):3800–12.

    Article  CAS  PubMed  Google Scholar 

  17. Shenouda SK, Alahari SK. MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28(3–4):369–78.

    Article  CAS  PubMed  Google Scholar 

  18. Tang J, Ahmad A, Sarkar FH. The Role of MicroRNAs in Breast Cancer Migration, Invasion and Metastasis. Int J Mol Sci. 2012;13(10):13414–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wieser R. The oncogene and developmental regulator EVI1: expression, biochemical properties, and biological functions. Gene. 2007;396(2):346–57.

    Article  CAS  PubMed  Google Scholar 

  20. Kilbey A, Bartholomew C. Evi-1 ZF1 DNA binding activity and a second distinct transcriptional repressor region are both required for optimal transformation of Rat1 fibroblasts. Oncogene. 1998;16(17):2287–91.

    Article  CAS  PubMed  Google Scholar 

  21. Glass C, Wuertzer C, Cui X, Bi Y, Davuluri R, Xiao YY, et al. Global Identification of EVI1 Target Genes in Acute Myeloid Leukemia. PLoS One. 2013;8(6):e67134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Buonamici S, Chakraborty S, Senyuk V, Nucifora G. The role of EVI1 in normal and leukemic cells. Blood Cells Mol Dis. 2003;31(2):206–12.

    Article  CAS  PubMed  Google Scholar 

  23. Nanjundan M, Nakayama Y, Cheng KW, Lahad J, Liu J, Lu K, et al. Amplification of MDS1/EVI1 and EVI1, located in the 3q26.2 amplicon, is associated with favorable patient prognosis in ovarian cancer. Cancer Res. 2007;67(7):3074–84.

    Article  CAS  PubMed  Google Scholar 

  24. Patel JB, Appaiah HN, Burnett RM, Bhat-Nakshatri P, Wang G, Mehta R, et al. Control of EVI-1 oncogene expression in metastatic breast cancer cells through microRNA miR-22. Oncogene. 2011;30(11):1290–301.

    Article  CAS  PubMed  Google Scholar 

  25. Jeruss JS, Sturgis CD, Rademaker AW, Woodruff TK. Down-regulation of activin, activin receptors, and Smads in high-grade breast cancer. Cancer Res. 2003;63(13):3783–90.

    CAS  PubMed  Google Scholar 

  26. Imamura T, Hikita A, Inoue Y. The roles of TGF-beta signaling in carcinogenesis and breast cancer metastasis. Breast Cancer. 2012;19(2):118–24.

    Article  PubMed  Google Scholar 

  27. Guan X, Chen L, Wang J, Geng H, Chu X, Zhang Q, et al. Mutations of phosphorylation sites Ser10 and Thr187 of p27Kip1 abolish cytoplasmic redistribution but do not abrogate G0/1 phase arrest in the HepG2 cell line. Biochem Biophys Res Commun. 2006;347(3):601–7.

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Chen L, Ko TC, Fields AP, Thompson EA. Evi1 is a survival factor which conveys resistance to both TGFbeta- and taxol-mediated cell death via PI3K/AKT. Oncogene. 2006;25(25):3565–75.

    Article  CAS  PubMed  Google Scholar 

  29. Alliston T, Ko TC, Cao Y, Liang YY, Feng XH, Chang C, et al. Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1. J Biol Chem. 2005;280(25):24227–37.

    Article  CAS  PubMed  Google Scholar 

  30. Sato T, Goyama S, Nitta E, Takeshita M, Yoshimi M, Nakagawa M, et al. Evi-1 promotes para-aortic splanchnopleural hematopoiesis through up-regulation of GATA-2 and repression of TGF-b signaling. Cancer Sci. 2008;99(7):1407–13.

    Article  CAS  PubMed  Google Scholar 

  31. Hirai H, Izutsu K, Kurokawa M, Mitani K. Oncogenic mechanisms of Evi-1 protein. Cancer Chemother Pharmacol. 2001;48 Suppl 1:S35–40.

    Article  CAS  PubMed  Google Scholar 

  32. Wieser R. New functions for ecotropic viral integration site 1 (EVI1), an oncogene causing aggressive malignant disease. Cell Cycle. 2012;11(21):3915.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Negrini M, Calin GA. Breast cancer metastasis: a microRNA story. Breast Cancer Res. 2008;10(2):203.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Song G, Zhang Y, Wang L. MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J Biol Chem. 2009;284(46):31921–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H. miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res. 2008;68(13):5004–8.

    Article  CAS  PubMed  Google Scholar 

  36. Chen X, Yan Q, Li S, Zhou L, Yang H, Yang Y, et al. Expression of the tumor suppressor miR-206 is associated with cellular proliferative inhibition and impairs invasion in ERalpha-positive endometrioid adenocarcinoma. Cancer Lett. 2012;314(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Wang J. MicroRNA-mediated breast cancer metastasis: from primary site to distant organs. Oncogene. 2012;31(20):2499–511.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the reviewers for their helpful comments on this paper.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TY., Huang, YP. & Ma, P. Correlations of common polymorphism of EVI-1 gene targeted by miRNA-206/133b with the pathogenesis of breast cancer. Tumor Biol. 35, 9255–9262 (2014). https://doi.org/10.1007/s13277-014-2213-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2213-5

Keywords

Navigation