Skip to main content

Advertisement

Log in

Dietary chlorophyllin abrogates TGFβ signaling to modulate the hallmark capabilities of cancer in an animal model of forestomach carcinogenesis

  • Research Article
  • Published:
Tumor Biology

Abstract

Transforming growth factor (TGF) β signaling pathway plays a central role in the regulation of a wide range of cellular processes involved in the acquisition of the malignant phenotype. The objective of the present study was to examine the effect of chlorophyllin, a semisynthetic derivative of chlorophyll on N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-induced rat forestomach carcinogenesis based on the modulation of TGFβ signaling and the downstream target genes associated with cell proliferation, apoptosis evasion, angiogenesis, invasion, and metastasis. We determined the effect of dietary chlorophyllin on TGFβ signaling and the downstream events—cell proliferation, apoptosis evasion, angiogenesis, invasion, and metastasis by semiquantitative and quantitative reverse transcription (RT)-PCR, Western blot, and immunohistochemical analyses. We further validated the inhibition of TGFβ signaling by chlorophyllin by performing molecular docking studies. We found that dietary supplementation of chlorophyllin at 4-mg/kg bw inhibits the development of MNNG-induced forestomach carcinomas by downregulating the expression of TGFβ RI, TGFβ RII, and Smad 2 and 4 and upregulating Smad 7, thereby abrogating canonical TGFβ signaling. Docking interactions also confirmed the inhibition of TGFβ signaling by chlorophyllin via inactivating TGFβ RI. Furthermore, attenuation of TGFβ signaling by chlorophyllin also blocked cell proliferation, angiogenesis, invasion, and metastasis, and induced mitochondria-mediated cell death. Dietary chlorophyllin that simultaneously abrogates TGFβ signaling pathway and the key hallmark events of cancer appear to be an ideal candidate for cancer chemoprevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Nagini S. Carcinoma of the stomach: a review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol. 2012;4:156–69.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Meulmeester E, Ten Dijke P. The dynamic roles of TGF-β in cancer. J Pathol. 2011;223:205–18.

    Article  CAS  PubMed  Google Scholar 

  4. Yan X, Chen YG. Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling. Biochem J. 2011;434:1–10.

    Article  CAS  PubMed  Google Scholar 

  5. Tian M, Neil JR, Schiemann WP. Transforming growth factor-β and the hallmarks of cancer. Cell Signal. 2011;23:951–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kim YS, Young MR, Bobe G, Colburn NH, Milner JA. Bioactive food components, inflammatory targets, and cancer prevention. Cancer Prev Res (Phila). 2009;2:200–8.

    Article  CAS  Google Scholar 

  7. Tumolo T, Lanfer-Marquez UM. Copper chlorophyllin: a food colorant with bioactive properties? Food Res Int. 2012;46:451–9.

    Article  CAS  Google Scholar 

  8. Arimoto S, Fukuoka S, Itome C, Nakano H, Rai H, Hayatsu H. Binding of polycyclic planar mutagens to chlorophyllin resulting in inhibition of the mutagenic activity. Mutat Res. 1993;287:293–305.

    Article  CAS  PubMed  Google Scholar 

  9. Carter O, Bailey GS, Dashwood RH. The dietary phytochemical chlorophyllin alters E-cadherin and beta-catenin expression in human colon cancer cells. J Nutr. 2004;134:3441S–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Ding XW, Ding XL, Zheng S, Yang HJ. CHL prevent colon neoplasms in mice and its selective inhibition on COX-2. Ai Zheng. 2004;23:1409–13.

    PubMed  Google Scholar 

  11. Kavitha K, Thiyagarajan P, Rathna Nandhini J, Mishra R, Nagini S. Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes. Biochimie. 2013;95:1629–39.

    Article  CAS  PubMed  Google Scholar 

  12. Nagini S, Vidya Priyadarsini R, Veeravarmal V, Mishra R. Chlorophyllin abrogates canonical Wnt/β-catenin signaling and angiogenesis to inhibit the development of DMBA-induced hamster cheek pouch carcinomas. Cell Oncol (Dordr). 2012;35:385–95.

    Article  Google Scholar 

  13. Thiyagarajan P, Senthil Murugan R, Kavitha K, Anitha P, Prathiba D, Nagini S. Dietary chlorophyllin inhibits the canonical NF-κB signaling pathway and induces intrinsic apoptosis in a hamster model of oral oncogenesis. Food Chem Toxicol. 2012;50:867–76.

    Article  CAS  PubMed  Google Scholar 

  14. Vidya Priyadarsini R, Kumar N, Khan I, Thiyagarajan P, Kondaiah P, Nagini S. Gene expression signature of DMBA-induced hamster buccal pouch carcinomas: modulation by chlorophyllin and ellagic acid. PLoS ONE. 2012;7:e34628.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Saravanan K, Nagarajan B. Genotoxicity assessment in vivo in gastric carcinogenesis. Med Sci Res. 1993;21:119–21.

    CAS  Google Scholar 

  16. Nagini S, Vidjaya Letchoumy P, Thangavelu A, Ramachandran CR. Of humans and hamsters: a comparative evaluation of carcinogen activation, DNA damage, cell proliferation, apoptosis, invasion, and angiogenesis in oral cancer patients and hamster buccal pouch carcinomas. Oral Oncol. 2009;45:e31–7.

    Article  CAS  PubMed  Google Scholar 

  17. Schüttelkopf AW, Van Aalten DM. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr. 2004;60:1355–63.

    Article  PubMed  Google Scholar 

  18. Grosdidier A, Zoete V, Michielin O. SwissDock. A protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39:W270–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ogunjimi AA, Zeqiraj E, Ceccarelli DF, Sicheri F, Wrana JL, David L. Structural basis for specificity of TGFβ family receptor small molecule inhibitors. Cell Signal. 2012;24:476–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Galliher AJ, Neil JR, Schiemann WP. Role of transforming growth factor-beta in cancer progression. Future Oncol. 2006;2:743–63.

    Article  CAS  PubMed  Google Scholar 

  22. Ma GF, Miao Q, Zeng XQ, Luo TC, Ma LL, Liu YM, et al. Transforming growth factor-β1 and -β2 in gastric precancer and cancer and roles in tumor-cell interactions with peripheral blood mononuclear cells in vitro. PLoS ONE. 2013;8:e54249.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shinto O, Yashiro M, Toyokawa T, Nishii T, Kaizaki R, Matsuzaki T, et al. Phosphorylated smad2 in advanced stage gastric carcinoma. BMC Cancer. 2010;10:652.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Azuma H, Ehata S, Miyazaki H, Watabe T, Maruyama O, Imamura T, et al. Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells. J Natl Cancer Inst. 2005;97:1734–46.

    Article  CAS  PubMed  Google Scholar 

  25. Javelaud D, Mohammad KS, McKenna CR, Fournier P, Luciani F, Niewolna M, et al. Stable overexpression of Smad7 in human melanoma cells impairs bone metastasis. Cancer Res. 2007;67:2317–24.

    Article  CAS  PubMed  Google Scholar 

  26. Johnson SM, Wang X, Evers BM. Triptolide inhibits proliferation and migration of colon cancer cells by inhibition of cell cycle regulators and cytokine receptors. J Surg Res. 2011;168:197–205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lee C, Zhang Q, Kozlowski J, Brendler C, Soares MB, Dash A, et al. Natural products and transforming growth factor-beta (TGF-β) signaling in cancer development and progression. Curr Cancer Drug Targets. 2013;13:500–5.

    Article  CAS  PubMed  Google Scholar 

  28. Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14:518–28.

    Article  CAS  PubMed  Google Scholar 

  29. Arici DS, Tuncer E, Ozer H, Simek G, Koyuncu A. Expression of retinoblastoma and cyclin D1 in gastric carcinoma. Neoplasma. 2009;56:63–7.

    Article  CAS  PubMed  Google Scholar 

  30. Liang B, Wang S, Yang X, Ye Y, Yu Y, Cui Z. Expressions of cyclin E, cyclin dependent kinase 2 and p57 (KIP2) in human gastric cancer. Chin Med J (Engl). 2003;116:20–3.

    CAS  Google Scholar 

  31. Wen X, Lin ZQ, Liu B, Wei YQ. Caspase-mediated programmed cell death pathways as potential therapeutic targets in cancer. Cell Prolif. 2012;45:217–24.

    Article  CAS  PubMed  Google Scholar 

  32. Jia L, Jin H, Zhou J, Chen L, Lu Y, Ming Y, et al. A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complement Altern Med. 2013;13:33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Li B, Wu Z, Li W, Jia G, Lu J, Fang J, et al. Chlorophyllin e4 is a novel photosensitizer against human bladder cancer cells. Oncol Rep. 2012;27:1455–60.

    CAS  PubMed  Google Scholar 

  34. Nagini S. RECKing MMP: relevance of reversion-inducing cysteine-rich protein with kazal motifs as a prognostic marker and therapeutic target for cancer (a review). Anti Cancer Agents Med Chem. 2012;12:718–25.

    Article  CAS  Google Scholar 

  35. Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis. J Intern Med. 2013;273:114–27.

    Article  CAS  PubMed  Google Scholar 

  36. Chou YT, Wang H, Chen Y, Danielpour D, Yang YC. Cited2 modulates TGF-beta-mediated upregulation of MMP9. Oncogene. 2006;25:5547–60.

    Article  CAS  PubMed  Google Scholar 

  37. Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14:163–Year.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the technical assistance of Mr. T. Kranthi Kiran Kishore. This work was supported by a grant from the Department of Biotechnology, New Delhi, India, under the 7th FP of the Indo-EU Joint Collaborative Project on “FUNCFOOD.”

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddavaram Nagini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary table 1

(DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiyagarajan, P., Kavitha, K., Thautam, A. et al. Dietary chlorophyllin abrogates TGFβ signaling to modulate the hallmark capabilities of cancer in an animal model of forestomach carcinogenesis. Tumor Biol. 35, 6725–6737 (2014). https://doi.org/10.1007/s13277-014-1849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1849-5

Keywords

Navigation