Skip to main content

Advertisement

Log in

Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway

  • Research Article
  • Published:
Tumor Biology

Abstract

The cytostatic drug from traditional Chinese medicinal herb has acted as a chemotherapeutic agent used in treatment of a wide variety of cancers. Oxymatrine, classified as a quinolizidine alkaloid, is a phytochemical product derived from Sophora flavescens, and has been reported to possess anticancer activities. However, the cancer growth inhibitory effects and molecular mechanisms in human osteosarcoma MNNG/HOS cell have not been well studied. In the present study, the cytotoxic effects of oxymatrine on MNNG/HOS cells were examined by MTT and bromodeoxyuridine (BrdU) incorporation assays. The percentage of apoptotic cells and the level of mitochondrial membrane potential (Δψ m) were assayed by flow cytometry. The levels of apoptosis-related proteins were measured by Western blot analysis or enzyme assay Kit. Our results showed that treatment with oxymatrine resulted in a significant inhibition of cell proliferation and DNA synthesis in a dose-dependent manner, which has been attributed to apoptosis. Furthermore, we found that oxymatrine considerably inhibited the expression of Bcl-2 whilst increasing that of Bax. This promoted mitochondrial dysfunction, leading to the release of cytochrome c from the mitochondria to the cytoplasm, as well as the activation of caspase-9 and -3. Moreover, addition of oxymatrine to MNNG/HOS cells also attenuated phosphatidylinositol 3-kinase (PI3K) ⁄Akt signaling pathway cascade, evidenced by the dephosphorylation of P13K and Akt. Likewise, oxymatrine significantly suppressed tumor growth in female BALB/C nude mice bearing MNNG/HOS xenograft tumors. In addition, no evidence of drug-related toxicity was identified in the treated animals by comparing the body weight increase and mortality. Therefore, these findings should be useful for understanding the apoptotic cellular mechanism mediated by oxymatrine and might offer a therapeutic potential advantage for human osteosarcoma chemoprevention or chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115:1531–43.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Lee JA, Kim MS, Kim DH, Lim JS, Yoo JY, Koh JS, et al. Relative tumor burden predicts metastasis-free survival in pediatric osteosarcoma. Pediatr Blood Cancer. 2008;50:195–200.

    Article  PubMed  Google Scholar 

  3. Longhi A, Errani C, De Paolis M, Mercuri M, Bacci G. Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev. 2006;32:423–36.

    Article  PubMed  Google Scholar 

  4. de Saint Aubain Somerhausen N, Fletcher CD. Soft-tissue sarcomas: an update. Eur J Surg Oncol. 1999;25:215–20.

    Article  PubMed  Google Scholar 

  5. Boos G, Stopper H. Genotoxicity of several clinically used topoisomerase II inhibitors. Toxicol Lett. 2000;116:7–16.

    Article  CAS  PubMed  Google Scholar 

  6. Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004;9:422–41.

    Article  PubMed  Google Scholar 

  7. Huang T, Gong WH, Li XC, Zou CP, Jiang GJ, Li XH, et al. Synergistic increase in the sensitivity of osteosarcoma cells to thermochemotherapy with combination of paclitaxel and etoposide. Mol Med Rep. 2012;6:1013–7.

    CAS  PubMed  Google Scholar 

  8. Liu Y, Wang L, Wu Y, Lv C, Li X, Cao X, et al. Pterostilbene exerts antitumor activity against human osteosarcoma cells by inhibiting the JAK2/STAT3 signaling pathway. Toxicology. 2013;304:120–31.

    Article  CAS  PubMed  Google Scholar 

  9. Tian L, Yin D, Ren Y, Gong C, Chen A, Guo FJ. Plumbagin induces apoptosis via the p53 pathway and generation of reactive oxygen species in human osteosarcoma cells. Mol Med Rep. 2012;5:126–32.

    CAS  PubMed  Google Scholar 

  10. Kerr JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol. 1971;105:13–20.

    Article  CAS  PubMed  Google Scholar 

  11. Yang R, Liu A, Ma X, Li L, Su D, Liu J. Sodium tanshinone IIA sulfonate protects cardiomyocytes against oxidative stress-mediated apoptosis through inhibiting JNK activation. J Cardiovasc Pharmacol. 2008;51:396–401.

    Article  CAS  PubMed  Google Scholar 

  12. Carson DA, Ribeiro JM. Apoptosis and disease. Lancet. 1993;341:1251–4.

    Article  CAS  PubMed  Google Scholar 

  13. Neto CC, Amoroso JW, Liberty AM. Anticancer activities of cranberry phytochemicals: an update. Mol Nutr Food Res. 2008;52:S18–27.

    PubMed  Google Scholar 

  14. Kaur M, Agarwal R. Transcription factors: molecular targets for prostate cancer intervention by phytochemicals. Curr Cancer Drug Targets. 2007;7:355–67.

    Article  CAS  PubMed  Google Scholar 

  15. Broker LE, Kruyt FA, Giaccone G. Cell death independent of caspase: a review. Clin Cancer Res. 2005;11:3155–62.

    Article  PubMed  Google Scholar 

  16. Spencer SL, Sorger PK. Measuring and modeling apoptosis in single cells. Cell. 2011;144:926.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26:1324–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.

    Article  CAS  PubMed  Google Scholar 

  19. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2:277–88.

    Article  CAS  PubMed  Google Scholar 

  20. Su ZY, Tung YC, Hwang LS, Sheen LY. Blazeispirol A from Agaricus blazei fermentation product induces cell death in human hepatoma Hep 3B cells through caspase-dependent and caspase-independent pathways. J Agric Food Chem. 2011;59:5109–16.

    Article  CAS  PubMed  Google Scholar 

  21. Kim D, Chung J. Akt: versatile mediator of cell survival and beyond. J Biochem Mol Biol. 2002;35:106–15.

    Article  CAS  PubMed  Google Scholar 

  22. Kurinna SM, Tsao CC, Nica AF, Jiffar T, Ruvolo PP. Ceramide promotes apoptosis in lung cancer-derived A549 cells by a mechanism involving c-Jun NH2-terminal kinase. Cancer Res. 2004;64:7852–6.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Kamdar O, Le W, Rosen GD, Upadhyay D. Nicotine induces resistance to chemotherapy by modulating mitochondrial signaling in lung cancer. Am J Respir Cell Mol Biol. 2009;40:135–46.

    Article  CAS  PubMed  Google Scholar 

  24. Wang B, Wang GJ, Xu J. Inhibitory effect of oxymatrine on vascular endothelial cell proliferation induced by tumor. J Pract Oncol. 2000;15:297–300.

    Google Scholar 

  25. Cao YG, Jing S, Li L, Gao JQ, Shen ZY, Liu Y, et al. Antiarrhythmic effects and ionic mechanisms of oxymatrine from sophora flavescens. Phytother Res. 2010;24:1844–9.

    Article  CAS  PubMed  Google Scholar 

  26. Cui X, Wang Y, Kokudo N, Fang D, Tang W. Traditional Chinese medicine and related active compounds against hepatitis b virus infection. Biosci Trends. 2010;4:39–47.

    CAS  PubMed  Google Scholar 

  27. Deng ZY, Li J, Jin Y, Chen XL, Lu XW. Effect of oxymatrine on the p38 mitogen-activated protein kinases signalling pathway in rats with ccl4 induced hepatic fibrosis. Chin Med J (Engl). 2009;122:1449–54.

    CAS  PubMed  Google Scholar 

  28. Fan H, Li L, Zhang X, Liu Y, Yang C, Yang Y, et al. Oxymatrine downregulates TLR4, TLR2, MyD88, and NF-kappaB and protects rat brains against focal ischemia. Mediat Inflamm. 2009;2009:704706.

    Article  Google Scholar 

  29. Chen H, Zhang J, Luo J, Lai F, Wang Z, Tong H, et al. Antiangiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF-κB-mediated VEGF signaling pathway. Oncol Rep. 2013;30:589–95.

    CAS  PubMed  Google Scholar 

  30. Ling Q, Xu X, Wei X, Wang W, Zhou B, Wang B, et al. Oxymatrine induces human pancreatic cancer PANC-1 cells apoptosis via regulating expression of Bcl-2 and IAP families, and releasing of cytochrome c. J Exp Clin Cancer Res. 2011;30:66.

    Article  CAS  PubMed  Google Scholar 

  31. Ho JW, Ngan Hon PL, Chim WO. Effects of oxymatrine from Ku Shen on cancer cells. Anticancer Agents Med Chem. 2009;9:823–6.

    Article  CAS  PubMed  Google Scholar 

  32. Zou J, Ran ZH, Xu Q, Xiao SD. Experimental study of the killing effects of oxymatrine on human colon cancer cell line SW1116. Chin J Dig Dis. 2005;6:15–20.

    Article  CAS  PubMed  Google Scholar 

  33. Song MQ, Zhu JS, Chen JL, Wang L, Da W, Zhu L, et al. Synergistic effect of oxymatrine and angiogenesis inhibitor NM-3 on modulating apoptosis in human gastric cancer cells. World J Gastroenterol. 2007;13:1788–93.

    CAS  PubMed  Google Scholar 

  34. Xu Q, Jin XF, Ran ZH, Yang CH, Xiao SD. Chemopreventive effect of oxymatrine on N-methyl-N′-nitro-N-nitrosoguanidine induced gastrointestinal cancer: experiment with rats. Zhonghua Yi Xue Za Zhi. 2007;87:855–8.

    CAS  PubMed  Google Scholar 

  35. Zhang Y, Piao BK, Zhang Y, Hua BJ, Hou W, Xu WR, et al. Oxymatrine diminishes the side population and inhibits the expression of β-catenin in MCF-7 breast cancer cells. Med Oncol. 2011;28:99–107.

    Article  CAS  Google Scholar 

  36. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998;94:481–90.

    Article  CAS  PubMed  Google Scholar 

  37. Soeda J, Miyagawa S, Sano K, Masumoto J, Taniguchi S, Kawasaki S. Cytochrome c release into cytosol with subsequent caspase activation during warm ischemia in rat liver. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1115–23.

    CAS  PubMed  Google Scholar 

  38. Allen RT, Hunter 3rd WJ, Agrawal DK. Morphological and biochemical characterization and analysis of apoptosis. J Pharmacol Toxicol Methods. 1997;37:215–28.

    Article  CAS  PubMed  Google Scholar 

  39. Qi F, Li A, Zhao L, Xu H, Inagaki Y, Wang D, et al. Cinobufacini, an aqueous extract from Bufo bufo gargarizans Cantor, induces apoptosis through a mitochondria-mediated pathway in human hepatocellular carcinoma cells. J Ethnopharmacol. 2010;128:654–61.

    Article  PubMed  Google Scholar 

  40. Tian Z, Shen J, Moseman AP, Yang Q, Yang J, Xiao P, et al. Dulxanthone A induces cell cycle arrest and apoptosis via up-regulation of p53 through mitochondrial pathway in HepG2 cells. Int J Cancer. 2008;122:31–8.

    Article  CAS  PubMed  Google Scholar 

  41. Stennicke HR, Salvesen GS. Properties of the caspases. Biochim Biophys Acta. 1998;1387:17–31.

    Article  CAS  PubMed  Google Scholar 

  42. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–90.

    Article  CAS  PubMed  Google Scholar 

  43. Kirkin V, Joos S, Zörnig M. The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta. 2004;1644:229–49.

    Article  CAS  PubMed  Google Scholar 

  44. Dan S, Yamori T. Repression of cyclin B1 expression after treatment with adriamycin, but not cisplatin in human lung cancer A549 cells. Biochem Biophys Res Commun. 2001;280:861–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honghui Sun or Yong Ding.

Additional information

Y. Zhang and S. Sun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Sun, S., Chen, J. et al. Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumor Biol. 35, 1619–1625 (2014). https://doi.org/10.1007/s13277-013-1223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1223-z

Keywords

Navigation