Skip to main content
Log in

CircBLNK regulates tumor proliferation and apoptosis by miR-578/ING5 axis in non-small cell lung cancer

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

Non-small cell lung cancer (NSCLC) is one of most threatening malignancies with a high morbidity and mortality that threaten human health and life.

Objective

This study aimed to investigate the role of circBLNK in NSCLC and reveal the regulation mechanism of circBLNK in NSCLC. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine the levels of circBLNK, miR-578 and inhibitor of growth 5 (ING5) mRNA. Cell proliferation activity was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2’-deoxyuridine (EdU) staining and colony formation assays. Flow cytometry was carried out to examine cell cycle and cell apoptosis. The dual-luciferase reporter assay was used to validate the interaction between miR-578 and circBLNK or ING5. Xenograft tumor experiment was performed to uncover the function of circBLNK in vivo.

Results

CircBLNK was notably down-regulated in NSCLC tissues and cells. Overexpression of circBLNK suppressed the proliferation and accelerated the apoptosis of NSCLC cells in vitro. CircBLNK targeted miR-578, and circBLNK exerted its biological function in NSCLC cells through sponging miR-578. ING5 was verified as a target of miR-578, and circBLNK increased the abundance of ING5 through targeting miR-578 in NSCLC cells. ING5 interference could partly reverse the biological effects of NSCLC cells mediated by circBLNK overexpression. CircBLNK overexpression repressed NSCLC tumor growth in vivo.

Conclusion

CircBLNK functioned as a tumor suppressor in NSCLC to suppress the proliferation and cell cycle and promote cell apoptosis of NSCLC cells through miR-578/ING5 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ (2020) Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci 21(5):1723

    Article  PubMed  PubMed Central  Google Scholar 

  • Barlak N, Capik O, Sanli F, Kilic A, Aytatli A, Yazici A, Ortucu S, Ittmann M, Karatas O (2019) ING5 inhibits cancer aggressiveness by inhibiting Akt and activating p53 in prostate cancer. Cell Biol Int 44:242–252

    Article  PubMed  Google Scholar 

  • Cao B, Deng S, Qin H, Luo J, Li G, Liang C (2021) Inferring MicroRNA-disease associations based on the identification of a functional module. J Comput Biol 28(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Han J (2018) Overexpression of ING5 inhibits HGF-induced proliferation, invasion and EMT in thyroid cancer cells via regulation of the c-Met/PI3K/Akt signaling pathway. Biomed Pharmacotherapy 98:265–270

    Article  CAS  Google Scholar 

  • Kristensen L, Andersen M, Stagsted L, Ebbesen K, Hansen T, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691

    Article  CAS  PubMed  Google Scholar 

  • Li G, Guo B, Wang H, Lin G, Lan T, Ying H, Xu J (2021a) CircRNA hsa_circ_0014130 function as a miR-132–3p sponge for playing oncogenic roles in bladder cancer via upregulating KCNJ12 expression. Cell Biol Toxicol

  • Li Y, Sun R, Li R, Chen Y, Du H (2021b) Prognostic nomogram based on circular RNA-associated competing endogenous RNA network for patients with lung adenocarcinoma. Oxid Med Cell Longev 2021:9978206

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu XL, Zhang XT, Meng J, Zhang HF, Zhao Y, Li C, Sun Y, Mei QB, Zhang F, Zhang T (2017) ING5 knockdown enhances migration and invasion of lung cancer cells by inducing EMT via EGFR/PI3K/Akt and IL-6/STAT3 signaling pathways. Oncotarget 8(33):54265–54276

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Meng J, Zhang X, Liang X, Zhang F, Zhao G, Zhang T (2019a) ING5 inhibits lung cancer invasion and epithelial-mesenchymal transition by inhibiting the WNT/β-catenin pathway. Thoracic Cancer 10(4):848–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XL, Meng J, Zhang XT, Liang XH, Zhang F, Zhao GR, Zhang T (2019b) ING5 inhibits lung cancer invasion and epithelial-mesenchymal transition by inhibiting the WNT/β-catenin pathway. Thorac Cancer 10(4):848–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisar S, Bhat A, Singh M, Karedath T, Rizwan A, Hashem S, Bagga P, Reddy R, Jamal F, Uddin S et al (2021) Insights Into the Role of CircRNAs: Biogenesis, characterization, functional, and clinical impact in human malignancies. Front Cell Develop Biol 9:617281

    Article  Google Scholar 

  • Ormaza G, Rodríguez JA, Ibáñez de Opakua A, Merino N, Villate M, Gorroño I, Rábano M, Palmero I, Vilaseca M, Kypta R et al (2019) The tumor suppressor ING5 is a dimeric, bivalent recognition molecule of the histone H3K4me3 mark. J Mol Biol 431(12):2298–2319

    Article  CAS  PubMed  Google Scholar 

  • Papaspyropoulos A, Hazapis O, Lagopati N, Polyzou A, Papanastasiou A, Liontos M, Gorgoulis V, Kotsinas A (2021) The role of circular RNAs in DNA damage response and repair. Cancers 13(21):5352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin C, Lu R, Yuan M, Zhao R, Zhou H, Fan X, Yin B, Yu H, Bian T (2021) Circular RNA 0006349 augments glycolysis and malignance of non-small cell lung cancer cells through the microRNA-98/MKP1 axis. Front Cell Develop Biol 9:690307

    Article  Google Scholar 

  • Ruan H, Xiang Y, Ko J, Li S, Jing Y, Zhu X, Ye Y, Zhang Z, Mills T, Feng J et al (2019) Comprehensive characterization of circular RNAs in ~ 1000 human cancer cell lines. Genome Med 11(1):55

    Article  PubMed  PubMed Central  Google Scholar 

  • Saliminejad K, Khorram Khorshid H, Soleymani Fard S, Ghaffari S (2019) An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 234(5):5451–5465

    Article  CAS  PubMed  Google Scholar 

  • Sang Y, Chen B, Song X, Li Y, Liang Y, Han D, Zhang N, Zhang H, Liu Y, Chen T et al (2021) circRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182–5p/FOXO3a Axis in breast cancer. Mol Therapy 27:1638–1652

    Article  Google Scholar 

  • Shao D, Du D, Liu H, Lv J, Cheng Y, Zhang H, Lv W, Wang S, Lu L (2021) Identification of stage IIIC/IV EGFR-mutated non-small cell lung cancer populations sensitive to targeted therapy based on a PET/CT radiomics risk model. Front Oncol 11:721318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 71(3):209–249

  • Wang M, Ma M, Yang Y, Li C, Wang Y, Sun X, Wang M, Sun Y, Jiao W (2021a) Overexpression of hsa_circ_0008274 inhibited the progression of lung adenocarcinoma by regulating HMGA2 via sponging miR-578. Thor Cancer 12(16):2258–2264

    Article  CAS  Google Scholar 

  • Wang Y, Tan J, Li J, Chen H, Wang W (2021b) ING5 inhibits migration and invasion of esophageal cancer cells by downregulating the IL-6/CXCL12 signaling pathway. Technol Cancer Res Treat 20:15330338211039940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Liu S, Xiang Y, Qu X, Xie Y, Zhang X (2019) Bioinformatic analysis of circular RNA-associated ceRNA network associated with hepatocellular carcinoma. Biomed Res Int 2019:8308694

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Jiang H, Fu H, Zhang Y (2021) A circGLIS3/miR-644a/PTBP1 positive feedback loop promotes the malignant biological progressions of non-small cell lung cancer. Am J Cancer Res 11(1):108–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue M, Hong W, Jiang J, Zhao F, Gao X (2020) Circular RNA circ-LDLRAD3 serves as an oncogene to promote non-small cell lung cancer progression by upregulating SLC1A5 through sponging miR-137. RNA Biol 17(12):1811–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XF, Shen DF, Zhao S, Ren TR, Gao Y, Shi S, Wu JC, Sun HZ, Zheng HC (2019) Expression pattern and level of ING5 protein in normal and cancer tissues. Oncol Lett 17(1):63–68

    CAS  PubMed  Google Scholar 

  • Yang Y, Kim H, Park B, Lee S, Park S, Lee C, Kim D, Paik H, Lee J (2021a) Positive nodal status is still a risk factor for long-term survivors of non-small cell lung cancer 5 years after complete resection. J Thorac Dis 13(10):5826–5834

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang B, Zhao F, Yao L, Zong Z, Xiao L (2021b) CircRNA circ_0006677 inhibits the progression and glycolysis in non-small-cell lung cancer by sponging miR-578 and regulating SOCS2 expression. Front Pharmacol 12:657053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Liu P, Huang J, Liao Y, Pan C, Liu J, Du Q, Liu T, Shang C, Ooi S et al (2021) Circular RNA hsa_circ_0043280 inhibits cervical cancer tumor growth and metastasis via miR-203a-3p/PAQR3 axis. Cell Death Dis 12(10):888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Ge T, Hu J, Jiang G, Zhang P (2021) Prognostic value of surgical intervention in advanced lung adenocarcinoma: a population-based study. J Thorac Dis 13(10):5942–5953

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors have been involved in the management of the patient and in the conception of the manuscript. The specific authors’ contribution is listed below. PL: Methodology, formal analysis and investigation, writing-original draft. LZ: Formal analysis and investigation, conceptualization. ZL: Formal analysis and investigation, resources. YL: Methodology, analysis and interpretation. SY: Formal analysis and investigation, resources. YZ: Methodology, resources. YX: Data collection, writing—review and editing.

Corresponding author

Correspondence to Yong Xie.

Ethics declarations

Conflict of interest

Ping Li declares that she has no financial conflicts of interest. Liuyi Zou declares that he has no financial conflicts of interest. Zuojun Luo declares that he has no financial conflicts of interest. Yuhua Lu declares that she has no financial conflicts of interest. Shuang Yu declares that she has no financial conflicts of interest. Yujun Zhu declares that he has no financial conflicts of interest. Yong Xie declares that he has no financial conflicts of interest.

Ethics approval and consent to participate

Written informed consents were obtained from all participants and this study was permitted by the Ethics Committee of Yichun People’s Hospital & The Affiliated Yichun Hospital of Nanchang University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Zou, L., Luo, Z. et al. CircBLNK regulates tumor proliferation and apoptosis by miR-578/ING5 axis in non-small cell lung cancer. Mol. Cell. Toxicol. 19, 453–462 (2023). https://doi.org/10.1007/s13273-022-00274-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-022-00274-6

Keywords

Navigation