Skip to main content
Log in

The environmental effects of microplastics on aquatic ecosystems

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Purpose of review

Contamination of aquatic ecosystems by plastics under 5 mm in size, which are classified as microplastics (MPs), is becoming increasingly serious, and research on the ecotoxicity of MPs is needed. In this study, we aimed to present solutions to the problem of MPs through a review of the current state of research on the definition of MPs, usage, leakage, toxicity, and domestic and overseas circulation of plastics.

Recent findings

Long-term exposure to MPs results in ecotoxicity. MPs not only deliver chemical substances within organisms, but also act as mediators for chemicals or other contaminants in aquatic environments. Co-exposure to MPs and chemical contaminants has been reported to increase toxicity in several organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hammer, J., Kraak, M. H. S. & Parsons, J. R. Plastics in the marine environment: The dark side of a modern gift. Rev Environ Contam Toxicol 220, 1–44 (2012).

    PubMed  CAS  Google Scholar 

  2. Ivleva, N. P., Wiesheu, A. C. & Niessner, R. Microplastic in Aquatic Ecosystems. Angew Chem Int Ed Engl 56, 1720–1739 (2017).

    Article  PubMed  CAS  Google Scholar 

  3. PlasticsEurope. Plastics–the Fact 2016 (2016).

  4. Shah, A. A., Hasan, F., Hameed, A. & Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol Adv 26, 246–265 (2008).

    Article  PubMed  CAS  Google Scholar 

  5. Chae, Y. & An, Y. J. Effects of micro–and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Mar Pollut Bull 124, 624–632 (2017).

    Article  PubMed  CAS  Google Scholar 

  6. https://echa.europa.eu/hot–topics/microplastics., ECHA.

  7. Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar Pollut Bull 62, 2588–2597 (2011).

    Article  PubMed  CAS  Google Scholar 

  8. Lambert, S. & Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145, 265–268 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lambert, S. & Wagner, M. Formation of microscopic particles during the degradation of different polymers. Chemosphere 161, 510–517 (2016).

    Article  PubMed  CAS  Google Scholar 

  10. Barboza, L. G. A.. Dick Vethaak, A., Lavorante, B. R. B. O., Lundebye, A. K. & Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar Pollut Bull 133, 336–348 (2018).

    Article  PubMed  CAS  Google Scholar 

  11. Costa, J. P., Santos, P. S. M., Duarte, A. C. & Rocha–Santos, T. (Nano) plastics in the environment–Sources, fates and effects. Sci Total Environ 566–567, 15–24 (2016).

    Article  PubMed  CAS  Google Scholar 

  12. Andrady, A. L. Microplastics in the marine environment. Mar Pollut Bull 62, 1596–1605 (2011).

    Article  PubMed  CAS  Google Scholar 

  13. Shah, A A., Hasan, F., Hameed, A. & Ahmed, S. Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26, 246–265 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. Gewert, B., Plassmann, M. M. & MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci: Processes Impacts 17, 1513–1521 (2015).

    CAS  Google Scholar 

  15. http://www.plasticskorea.co.kr/, PlasticsKorea.

  16. Ministry of Environment, National Waste Generation and Disposal Status, Status of Waste Treatment–Municipal Waste (2017).

  17. Plasticeurope. Plastics–the facts 2017 (2017).

  18. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci Adv 3, 1–5 (2017).

    Article  CAS  Google Scholar 

  19. Andrady, A. L. Microplastics in the marine environment. Mar Pollut Bull 62, 1596–1605 (2011).

    Article  PubMed  CAS  Google Scholar 

  20. Magnusson, K. & Norén, F. Screening of Microplastic Particles in and Down–stream a Wastewater Treatment Plant. Swedish Environmental Research Institute: 1–22 (2014).

  21. Baltic Marine Environment Protection Commission. Preliminary Study on Synthetic Microfibers and Particles at a Municipal Waste Water Treatment Plant. HELCOM Report, 6–11(2014).

  22. Estahbanati, S. & Fahrenfeld, N. L. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere 162, 277–284 (2016).

    Article  PubMed  CAS  Google Scholar 

  23. Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. Wastewater treatment Works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol 50, 5800–5808 (2016).

    Article  PubMed  CAS  Google Scholar 

  24. Dyachenko, A., Mitchell, J. & Arsem, N. Extraction and identification of microplastic particles from secondary wastewater treatment plant (WWTP) effluent. Anal Methods 9, 1412–1418 (2017).

    Article  CAS  Google Scholar 

  25. Mintenig, S. M., Int–Veen, I., Loder, M. G. J., Primpke, S. & Gerdts, G. Identification of microplastic in effluents of waste water treatment plants using focal plane array–based micro–Fourier–transform infrared imaging. Water Res 108, 365–372 (2017).

    Article  PubMed  CAS  Google Scholar 

  26. Lee, H., Shim, W. J. & Kwon, J. H. Sorption capacity of plastic debris for hydrophobic organic chemicals. Sci Total Environ 470–471, 1545–1552 (2014).

    Article  PubMed  CAS  Google Scholar 

  27. Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci U S A 113, 2430–2435 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Au, S. Y., Bruce, T. F., Bridges, W. C. & Klaine, S. J. Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ Toxicol Chem 34, 2564–2572 (2015).

    Article  PubMed  CAS  Google Scholar 

  29. Hämer, J., Gutow, L., Köhler, A. & Saborowski, R. Fate of microplastics in the marine isopod Idotea emarginata. Environ Sci Technol 48, 13451–13458 (2014).

    Article  PubMed  CAS  Google Scholar 

  30. Cole, M. & Galloway, T. S. Ingestion of Nanoplastics and Microplastics by Pacific Oyster Larvae. Environ Sci Technol 49, 14625–14623 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Sjollema, S. B., Redondo–Hasselerharm, P., Leslie, H. A., Kraak, M. H. S. & Vethaak, A. D. Do plastic particles affect microalgal photosynthesis and growth?. Aquat Toxicol 170, 259–261 (2016).

    Article  PubMed  CAS  Google Scholar 

  32. Rehse, S., Kloas, W. & Zarfl, C. Short–term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 153, 91–99 (2016).

    Article  PubMed  CAS  Google Scholar 

  33. Besseling, E., Wang, B., Lürling, M. & Koelmans, A. A. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48, 12336–12343 (2014).

    PubMed  CAS  Google Scholar 

  34. Lee, K. W., Shim, W. J., Kwon, O. Y. & Kang, J. H. Size–dependent effects of micro polystyrene particles in the marine copepod tigriopus japonicus. Environ Sci Technol 47, 11278–11283 (2013).

    Article  PubMed  CAS  Google Scholar 

  35. Green, D. S., Boots, B., Sigwart, J., Jiang, S. & Rocha, C. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ Pollut 208, 426–434 (2016).

    Article  PubMed  CAS  Google Scholar 

  36. Hall, N. M., Berry, K. L. E., Rintoul, L. & Hoogenboom, M. O. Microplastic ingestion by scleractinian corals. Marine Biology 162, 725–732 (2015).

    Article  CAS  Google Scholar 

  37. Hart, M. W. Particle captures and the method of suspension feeding by echinoderm larvae. Biol Bull 180, 12–27 (1991).

    Article  PubMed  CAS  Google Scholar 

  38. Nobre, C. R. et al. Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea). Mar Pollut Bull 92, 99–104 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. Wright, S. L., Rowe, D., Thompson, R. C. & Galloway, T. S. Microplastic ingestion decreases energy reserves in marine worms. Curr Biol 23, R1031–R1033 (2013).

    Article  PubMed  CAS  Google Scholar 

  40. Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M. & Thompson, R. C. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42, 5026–5031 (2008).

    Article  PubMed  CAS  Google Scholar 

  41. Canesi, L. et al. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Mar Environ Res 111, 34–40 (2015).

    Article  PubMed  CAS  Google Scholar 

  42. Casado, M. P., Macken, A. & Byrne, H. J. Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery. Environ Int 51, 97–105 (2013)

    Article  PubMed  CAS  Google Scholar 

  43. Chae, Y. & An, Y. J. Effects of micro–and nanoplastics on aquatic ecosystems: current research trends and perspectives. Mar Pollut Bull 124, 624–632 (2017).

    Article  PubMed  CAS  Google Scholar 

  44. von Moos, N., Burkhardt–Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46, 11327–11335 (2012).

    Article  CAS  Google Scholar 

  45. Yu, P. et al. Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver. Aquat Toxicol 200, 28–36 (2018).

    Article  PubMed  CAS  Google Scholar 

  46. Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & Canning–Clode, J. Microplastics as Vector for Heavy Metal Contamination from the Marine Environment. Estuar. Coast, Shelf Sci 178, 189–195 (2016).

    Article  CAS  Google Scholar 

  47. Koelmans, A. A., Bakir, A., Burton, G. A. & Janssen, C. R. Microplastic as a vector for chemicals in the aquatic environment: critical review and model–supported reinterpretation of empirical studies. Environ Sci Technol 50, 3315–3326 (2016).

    Article  PubMed  CAS  Google Scholar 

  48. Rochman, C. M., Hoh, E., Kurobe, T. & Teh. S. J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep 3263, 3263 (2013).

    Google Scholar 

  49. Pedá, C. et al. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: preliminary results. Environ Pollut 212, 251–256 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Chen, Q. et al. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. Sci Total Enviorn 609, 1312–1321 (2017).

    Article  CAS  Google Scholar 

  51. Granby, K. et al. The influence of microplastics and halogenated contaminants in feed on toxicokinetics and gene expression in European seabass (Dicentrarchus labrax). Environ Res 164, 430–443 (2018).

    Article  PubMed  CAS  Google Scholar 

  52. Rainieri, S., Conlledo, N., Larsen, B. K., Granby, K. & Barranco, A. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio). Environ Res 162, 135–143 (2018).

    Article  PubMed  CAS  Google Scholar 

  53. Mendoza, L. M. R. Micro (nanoplastics) in the marine environment Current knowledge and gaps. Current Opinion in Environmental Science & Health 1, 47–51 (2018).

    Article  Google Scholar 

  54. Ma, Y. N. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. Environ Pollut 219, 166–173 (2016).

    Article  PubMed  CAS  Google Scholar 

  55. Mattsson, K. et al. Altered Behavior, Physiology, and Metabolism in Fish Exposed to Polystyrene Nanoparticles. Environ Sci Technol 49, 553–561 (2014).

    Article  PubMed  CAS  Google Scholar 

  56. Chae, Y., Kim, D., Kim, S. W. & An, Y. J. Trophic transfer and individual impact of nano–sized polystyrene in a four–species freshwater food chain. Sci Rep 10, 1–11 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Kyeong Yeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, J., Yeo, MK. The environmental effects of microplastics on aquatic ecosystems. Mol. Cell. Toxicol. 14, 353–359 (2018). https://doi.org/10.1007/s13273-018-0039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-018-0039-8

Keywords

Navigation