Skip to main content
Log in

Comparative analysis of Adam33 mutations in murine lung cancer cell lines by droplet digital PCR, real-time PCR and Insight Onco™ NGS

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Backgrounds

In a mouse-based carcinogen bioassay, we can identify lung cancer-specific oncogenic driver mutations in circulating cell-free DNA in the blood prior to autopsy. These mutations could be used as an early biomarker for lung cancer.

Methods

We investigated single nucleotide variants in gDNA isolated from LA-4 and KLN205 cell lines, through whole exome sequencing.

Results

SNVs of 15 representative genes related to lung cancer (such as Adam33) were confirmed. Among them, Adam33 increased the risk of chronic obstructive pulmonary disease (COPD), which is reported to be associated with lung cancer. Therefore, we selected Adam33, an asthma-related gene, for this study. The sensitivity of real-time PCR, droplet digital PCR and Insight Onco™ NGS to detect rare mutations of Adam33 was 10%, 1%, and 0.05%, respectively.

Conclusion

We confirmed that the Insight Onco™ technique is a sensitive method that can be used to detect lung-specific rare mutations in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jung, K. W. et al. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2014. Cancer Res Treat 49, 292–305 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen, Z., Fillmore, C. M., Hammerman, P. S., Kim, C. F. & Wong, K. K. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14, 535–546 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wakamatsu, N., Devereux, T. R., Hong, H. H. & Sills, R. C. Overview of the molecular carcinogenesis of mouse lung tumor models of human lung cancer. Toxicol Pathol 35, 75–80 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Seranno, S. & Meuwissen, R. Progress and applications of mouse models for human lung cancer. Eur Respir J 35, 426–443 (2010).

    Article  PubMed  Google Scholar 

  5. Kellar, A., Egan, C. & Morris, D. Preclinical Murine Models for Lung Cancer: Clinical Trial Applications. Biomed Res Int 2015, 621324 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stoner, G. D., Kikkawa, Y., Kniazeff, A. J., Miyai, K. & Wagner, R. M. Clonal isolation of epithelial cells from mouse lung adenoma. Cancer Res 35, 2177–2185 (1975).

    CAS  PubMed  Google Scholar 

  7. Kaneko, T. & LePage, G. A. Growth characteristics and drug responses of a murine lung carcinoma in vitro and in vivo. Cancer Res 38, 2084–2090 (1978).

    CAS  PubMed  Google Scholar 

  8. Rabbani, B., Tekin, M. & Mahdieh, N. The promise of whole-exome sequencing in medical genetics. J Hum Genet 59, 5–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Sheikine, Y. et al. EGFR Testing in Advanced Non-Small-Cell Lung Cancer, A Mini-Review. Clin Lung Cancer 17, 483–492 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Vendrell, J. A. et al. Circulating Cell Free Tumor DNA Detection as a Routine Tool for Lung Cancer Patient Management. Int J Mol Sci 18, 264 (2017).

    Article  PubMed Central  Google Scholar 

  11. Wang, J. et al. IDH1 mutation detection by droplet digital PCR in glioma. Oncotarget 6, 39651–39660 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Miyazawa, H. et al. Peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp-based detection test for gefitinib-refractory T790M epidermal growth factor receptor mutation. Cancer Sci 99, 595–600 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Westcott, P. M. et al. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 517, 489–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Yoon, S. H. et al. Peptide Nucleic Acid Clamping Versus Direct Sequencing for the Detection of EGFR Gene Mutation in Patients with Non-small Cell Lung Cancer. Cancer Res Treat 47, 661–669 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang, S. et al. Targeted sequencing with enrichment PCR: a novel diagnostic method for the detection of EGFR mutations. Oncotarget 6, 13742–13749 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Lee, B. et al. KRAS Mutation Detection in Non-small Cell Lung Cancer Using a Peptide Nucleic Acid-Mediated Polymerase Chain Reaction Clamping Method and Comparative Validation with Next-Generation Sequencing. Korean J Pathol 48, 100–107 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guttery, D. S. et al. Noninvasive detection of activating estrogen receptor 1 (ESR1) mutations in estrogen receptor-positive metastatic breast cancer. Clin Chem 61, 974–982 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Castellanos-Rizaldos, E. et al. Enhanced ratio of signals enables digital mutation scanning for rare allele detection. J Mol Diagn 17, 284–292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Awasthi, S., Tripathi, P., Ganesh, S. & Husain, N. Association of ADAM33 gene polymorphisms with asthma in Indian children. J Hum Genet 56, 188–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Siena, L. et al. Gemcitabine sensitizes lung cancer cells to Fas/FasL system-mediated killing. Immunology 141, 242–255 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moses, M. A. & Roy, R. Adamts-7 as a Biomarker for Cancers of Epithelial Origin, www.google.com/patents/US20080268473 (2006).

    Google Scholar 

  22. Lihong, H. et al. Proteomics approaches for identification of tumor relevant protein targets in pulmonary squamous cell carcinoma by 2D-DIGE-MS. PLoS One 9, e95121 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li, X.-J. & Kearney, P. Diagnostic lung cancer panel and methods for its use, www.google.com/patents/US 9403889 (2016).

    Google Scholar 

  24. Tuscano, J. M. et al. CD22 antigen is broadly expressed on lung cancer cells and is a target for antibody-based therapy. Cancer Res 72, 5556–5565 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Kato, T. et al. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res 67, 8544–8553 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Campa, D. et al. A comprehensive study of polymorphisms in ABCB1, ABCC2 and ABCG2 and lung cancer chemotherapy response and prognosis. Int J Cancer 131, 2920–2928 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Latini, F. R., Hemerly, J. P., Oler, G., Riggins, G. J. & Cerutti, J. M. Re-expression of ABI3-binding protein suppresses thyroid tumor growth by promoting senescence and inhibiting invasion. Endocr Relat Cancer 15, 787–799 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Okamura, K. et al. Expression of TrkB and BDNF is associated with poor prognosis in non-small cell lung cancer. Lung Cancer 78, 100–106 (2012).

    Article  PubMed  Google Scholar 

  29. Okroj, M., Hsu, Y. F., Ajona, D., Pio, R. & Blom, A. M. Non-small cell lung cancer cells produce a functional set of complement factor I and its soluble cofactors. Mol Immunol 45, 169–179 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka, Y., Amos, K. D., Joo, H. G., Eberlein, T. J. & Goedegebuure, P. S. Modification of the HER2/NEU-derived tumor antigen GP2 improves induction of GP2-reactive cytotoxic T lymphocytes. Int J Cancer 94, 540–544 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Bermudez, O., Hennen, E., Koch, I., Lindner, M. & Eickelberg, O. Gli1 mediates lung cancer cell proliferation and Sonic Hedgehog-dependent mesenchymal cell activation. PLoS One 8, e63226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park, J. Y. et al. Gene silencing of SLC5A8 identified by genome-wide methylation profiling in lung cancer. Lung Cancer 79, 198–204 (2013).

    Article  PubMed  Google Scholar 

  33. Wu, X. et al. XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity. Carcinogenesis 24, 505–509 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Chan, B. A. & Hughes, B. G. Targeted therapy for nonsmall cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res 4, 36–54 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Choi, J. H. Molecular Biology of Non-small-cell Lung Cancer. Hanyang Medical Reviews 34, 4–9 (2014).

    Article  CAS  Google Scholar 

  36. Murphy, G. The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8, 929–941 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Dijkstra, A. et al. Expression of ADAMs (“a disintegrin and metalloprotease”) in the human lung. Virchows Arch 454, 441–449 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Davies, E. R. et al. Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life. JCI Insight 1 (2016).

  39. Umland, S. P. et al. Mouse ADAM33, two splice variants differ in protein maturation and localization. Am J Respir Cell Mol Biol 30, 530–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Jackson, H. W., Defamie, V., Waterhouse, P. & Khokha, R. TIMPs: versatile extracellular regulators in cancer. Nat Rev Cancer 17, 38–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Seniski, G. G. et al. ADAM33 gene silencing by promoter hypermethylation as a molecular marker in breast invasive lobular carcinoma. BMC Cancer 9, 80 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mochizuki, S. & Okada, Y. ADAMs in cancer cell proliferation and progression. Cancer Sci 98, 621–628 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Manica, G. C. et al. Down regulation of ADAM33 as a Predictive Biomarker of Aggressive Breast Cancer. Sci Rep 7, 44414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tripathi, P., Awasthi, S. & Gao, P. ADAM metallopeptidase domain 33 (ADAM33): a promising target for asthma. Mediators Inflamm 2014, 572025 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Taniguchi, K. et al. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res 17, 7808–7815 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, B. O. et al. Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation. Exp Ther Med 9, 1383–1388 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, J. et al. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med 14, 579–584 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Nagai, Y. et al. Genetic heterogeneity of the epidermal growth factor receptor in non-small cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp. Cancer Res 65, 7276–7282 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, H. et al. Allele-specific, non-extendable primer blocker PCR (AS-NEPB-PCR) for DNA mutation detection in cancer. J Mol Diagn 15, 62–69 (2013).

    Article  PubMed  Google Scholar 

  50. Xie, F. et al. Sensitive detection of trace amounts of KRAS codon 12 mutations by a fast and novel one-step technique. Clin Biochem 47, 237–242 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Narayan, A. et al. Ultrasensitive measurement of hotspot mutations in tumor DNA in blood using error-suppressed multiplexed deep sequencing. Cancer Res 72, 3492–3498 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pecuchet, N. et al. Analysis of Base-Position Error Rate of Next-Generation Sequencing to Detect Tumor Mutations in Circulating DNA. Clin Chem 62, 1492–1503 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4, 136ra168 (2012).

    Article  Google Scholar 

  54. Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20, 548–554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lv, W. et al. Noninvasive prenatal testing for Wilson disease by use of circulating single-molecule amplification and resequencing technology (cSMART). Clin Chem 61, 172–181 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Chai, X. et al. A comparative study of EGFR oncogenic mutations in matching tissue and plasma samples from patients with advanced non-small cell lung carcinoma. Clin Chim Acta 457, 106–111 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Lanman, R. B. et al. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA. PLoS One 10, e0140712 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Paweletz, C. P. et al. Bias-Corrected Targeted Next-Generation Sequencing for Rapid, Multiplexed Detection of Actionable Alterations in Cell-Free DNA from Advanced Lung Cancer Patients. Clin Cancer Res 22, 915–922 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Wee, E. J., Wang, Y., Tsao, S. C. & Trau, M. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags. Theranostics 6, 1506–1513 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mosko, M. J. et al. Ultrasensitive Detection of Multiplexed Somatic Mutations Using MALDI-TOF Mass Spectrometry. J Mol Diagn 18, 23–31 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Taek Rim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SJ., Kim, E. & Rim, KT. Comparative analysis of Adam33 mutations in murine lung cancer cell lines by droplet digital PCR, real-time PCR and Insight Onco™ NGS. Mol. Cell. Toxicol. 14, 221–231 (2018). https://doi.org/10.1007/s13273-018-0024-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-018-0024-2

Keywords

Navigation