Skip to main content
Log in

Effect of crotonaldehyde on the induction of COX-2 expression in human endothelial cells

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Cyclooxygenase-2 (COX-2), an inducible isoform protein, regulates diverse biological actions in vascular pathophysiology. COX-2 is induced in response to numerous stimuli, which results in prostaglandin (PG) production related to inflammation. Crotonaldehyde (CRA) is an extremely toxic α, β-unsaturated aldehyde and a major compound found in cigarette smoke. α, β-Unsaturated aldehyde in cigarette smoke is thought to mediate inflammation and vascular dysfunction. In this study, we evaluated the effect of CRA stimulation on COX-2 expression in human umbilical vein endothelial cells. CRA-stimulated COX-2 induction was accompanied by enhanced p38 phosphorylation and PGE2 generation. However, CRA-induced PGE2 production was reduced by pretreatment with an inhibitor of p38 MAPK. These results demonstrated that in human endothelial cells, CRA-induced COX-2-dependent PGE2 generation was mediated by p38 MAPK, and CRA may play a role in the development of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du, F. et al. Gradient nanofibrous chitosan/poly varepsilon-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials 33:762–770 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Frostegard, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med 11:117 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. van Diepen, J. A., Berbee, J. F. P., Havekes, L. M. & Rensen, P. C. N. Interactions between inflammation and lipid metabolism: Relevance for efficacy of anti-inflammatory drugs in the treatment of atherosclerosis. Atherosclerosis 228:306–315 (2013).

    Article  PubMed  Google Scholar 

  4. Davignon, J. & Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation 109:27–32 (2004).

    Article  Google Scholar 

  5. Barua, R. S., Sharma, M. & Dileepan, K. N. Cigarette Smoke Amplifies Inflammatory Response and Atherosclerosis Progression Through Activation of the H1RTLR2/4-COX2 Axis. Front Immunol 6:572 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Morris, P. B. et al. Cardiovascular Effects of Exposure to Cigarette Smoke and Electronic Cigarettes Clinical Perspectives From the Prevention of Cardiovascular Disease Section Leadership Council and Early Career Councils of the American College of Cardiology. J Am Coll Cardiol 66:1378–1391 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. ul Islam, B. et al. Neo-epitopes on crotonaldehyde modified DNA preferably recognize circulating autoantibodies in cancer patients. Tumor Biol 37:1817–1824 (2016).

    Article  CAS  Google Scholar 

  8. Hong, J. Y. et al. Environmental Risk Assessment of Toxicity Exposure: High-throughput Expression Profiling. BioChip J 10:74–80 (2016).

    Article  CAS  Google Scholar 

  9. Yang, B. C. et al. Crotonaldehyde-exposed macrophages induce IL-8 release from airway epithelial cells through NF-kappa B and AP-1 pathways. Toxicol Lett 219:26–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, B. C. et al. Crotonaldehyde induces apoptosis and immunosuppression in alveolar macrophages. Toxicol In Vitro 27:128–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Moretto, N. et al. alpha,beta-Unsaturated aldehydes contained in cigarette smoke elicit IL-8 release in pulmonary cells through mitogen-activated protein kinases. Am J Physiol Lung Cell Mole Physiol 296:L839–L848 (2009).

    Article  CAS  Google Scholar 

  12. Siti, H. N., Kamisah, Y. & Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol 71:40–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Zinellu, E., Zinellu, A., Fois, A. G., Carru, C. & Pirina, P. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Respir Res 17:150 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Munoz, M. et al. COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats. Free Radic Biol Med 84:77–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Gao, Z. et al. Cyclooxygenase-2-dependent oxidative stress mediates palmitate-induced impairment of endothelium-dependent relaxations in mouse arteries. Biochem Pharmacol 91:474–482 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Park, Y. S. et al. Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells-Roles of p38 MAP kinase. Arterioscler Thromb Vasc Biol 27:1319–1325 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Smith, W. L. & Langenbach, R. Why there are two cyclooxygenase isozymes. J Clin Invest 107:1491–1495 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Macedo, F. Y. B. et al. Induction of COX-2 expression by acrolein in the rat model of hemorrhagic cystitis. Exp Toxicol Pathol 59:425–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Uchida, K. A lipid-derived endogenous inducer of COX-2: a bridge between inflammation and oxidative stress. Mol Cells 25:347–351 (2008).

    CAS  PubMed  Google Scholar 

  20. Yang, C. M. et al. Cigarette smoke extract induces COX-2 expression via a PKC alpha/c-Src/EGFR, PDGFR/PI3K/Akt/NF-kappa B pathway and p300 in tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 297:L892–L902 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, S. E. & Park, Y. S. Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells. J Ginseng Res 38:34–39 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Fujimori, K., Yano, M., Miyake, H. & Kimura, H. Termination mechanism of CREB-dependent activation of COX-2 expression in early phase of adipogenesis. Mol Cell Endocrinol 384:12–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Rodgman, A. & Perfetti, T. A. The chemical components of tobacco and tobacco smoke. 2nd ed. (CRC Press, Boca Raton, 2013).

    Book  Google Scholar 

  24. Messner, B. & Bernhard, D. Smoking and Cardiovascular Disease Mechanisms of Endothelial Dysfunction and Early Atherogenesis. Arterioscler Thromb Vasc Biol 34:509–515 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Yu, S. Y., Paul, S. & Hwang, S. Y. Application of the Emerging Technologies in Toxicogenomics: An Overview. BioChip J 10:288–296 (2016).

    Article  CAS  Google Scholar 

  26. Wu, Z. B., He, E. Y., Scott, G. I. & Ren, J. alpha, beta-Unsaturated aldehyde pollutant acrolein suppresses cardiomyocyte contractile function: Role of TRPV1 and oxidative stress. Environ Toxicol 30:638–647 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, S. E. & Park, Y. S. Role of Lipid Peroxidation-Derived alpha, beta-Unsaturated Aldehydes in Vascular Dysfunction. Oxid Med Cell Longev 2013:629028 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. Andre, E. et al. Cigarette smoke-induced neurogenic inflammation is mediated by alpha,beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest 118:2574–2582 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ismahil, M. A. et al. Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 301:H2050–H2060 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, X. Y., Yang, Z. H., Pan, X. J., Zhu, M. X. & Xie, J. P. Crotonaldehyde induces oxidative stress and caspase-dependent apoptosis in human bronchial epithelial cells. Toxicol Lett 195:90–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Kirkby, N. S. et al. COX-2 Protects against Atherosclerosis Independently of Local Vascular Prostacyclin: Identification of COX-2 Associated Pathways Implicate Rgll and Lymphocyte Networks. PLoS ONE 9:e98165 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Belton, O. A., Duffy, A., Toomey, S. & Fitzgerald, D. J. Cyclooxygenase isoforms and platelet vessel wall interactions in the apolipoprotein E knockout mouse model of atherosclerosis. Circulation 108:3017–3023 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Hernandez-Presa, M. A. et al. Atorvastatin reduces the expression of cyclooxygenase-2 in a rabbit model of atherosclerosis and in cultured vascular smooth muscle cells. Atherosclerosis 160:49–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Burleigh, M. E. et al. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 105:1816–1823 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Dubois, R. N. et al. Cyclooxygenase in biology and disease. FASEB J 12:1063–1073 (1998).

    CAS  PubMed  Google Scholar 

  36. Karaoglu, A. et al. Role of Cyclooxygenase 2 and Endothelial Nitric Oxide Synthetase in Preclinical Atherosclerosis. Fetal Pediatr Pathol 31:432–438 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Elmarakby, A. A. & Imig, J. D. Obesity is the major contributor to vascular dysfunction and inflammation in high-fat diet hypertensive rats. Clin Sci 118:291–301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, G. W. et al. Integrative Analyses of Differential Gene Expression and DNA Methylation of Ethylbenzene-exposed Workers. BioChip J 9:259–267 (2015).

    Article  CAS  Google Scholar 

  39. Lee, S. E. et al. Integrative Analysis of miRNA and mRNA Profiles in Response to Myricetin in Human Endothelial Cells. BioChip J 9:239–246 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Seek Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.E., Park, H.R., Kim, H. et al. Effect of crotonaldehyde on the induction of COX-2 expression in human endothelial cells. Mol. Cell. Toxicol. 13, 345–350 (2017). https://doi.org/10.1007/s13273-017-0038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-017-0038-1

Key words

Navigation