Skip to main content
Log in

Genetic relationship between an endothelin 1 gene polymorphism and lead-related high blood pressure

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

This study investigated the effect of an endothelin 1 (EDN1) T-1370G polymorphism on blood lead levels and lead-related blood pressure (LBP) of male Korean workers who had exposure to lead. A cross sectional study involving 771 male lead-exposed workers from Korea was conducted. High resolution melting analysis was used to differentiate the genotypes of the polymorphism. Association of clinical characteristics with genotypes as modifiers was estimated after adjusting for age, smoking status, drinking status, and job duration. Genotype and allele frequencies of the polymorphism were found to be associated with LBP. Blood lead levels were not associated with genotype or allele frequencies. Based on these results, it was concluded that G allele carrier (GG or GG+TG) and G allele of EDN1 polymorphism might be a risk factor of lead-related high blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banno, M. et al. Association of Genetic Polymorphisms of Endothelin-Converting Enzyme-1 Gene with Hypertension in a Japanese Population and Rare Missense Mutation in Preproendothelin-1 in Japanese Hypertensives. Hypertens Res 30:513–520 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Dhaun, N. et al. Role of endothelin-1 in clinical hypertension: 20 years on. Hypertension 52:452–459 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Harrison, R. M. & Laxen, D. P. H. in Lead pollution causes and control 1-168 (Chapman and Hall, New York, 1981).

    Google Scholar 

  4. Patrick, L. Lead Toxicity, a review of the literature. Part I: Exposure, Evaluation, and treatment. Altern Med Rev 11:2–22 (2006).

    PubMed  Google Scholar 

  5. Vaziri, N. D. Mechanisms of lead-induced hypertension and cardiovascular disease. Am J Physiol -Heart and Circ Physiol 295:H454–H465 (2008).

    Article  CAS  Google Scholar 

  6. Purdy, R. E. et al. Lead-induced hypertension is not associated with altered vascular reactivity in vitro. Am J Hypertens 10:997–1003 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Carmignani, M. et al. Catcholamine and oxide nitric systems as targets of chronic lead exposure in inducing selective functional impairment. Life Science 68:401–451 (2000).

    Article  CAS  Google Scholar 

  8. Weiler, E., Khalil-Manesh, F. & Gonick, H. Effects of lead and natriuretic hormone on kinetic of sodium potassium ATPase: Possible relevance to hypertension. Environ Health Perspect 78:113–117 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Watts, S. W., Chai, S. & Webb, R. C. Lead acetate-induced contraction in rabbit mesenteric artery: Interaction with calciumand protein kinase C. Toxicology 99:55–65 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Sharifi, A. M. et al. Investigation of circulatory and tissue ACE activity during development of lead-induced hypertension. Toxicol Lett 153:233–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Vaziri, N. D. Pathogenesis of lead-induced hypertension: role of oxidative stress. J Hypertensions Suppl 20:S15–20 (2002).

    Google Scholar 

  12. Kim, H. K., Lee, H., Kwon, J. T. & Kim, H. J. A polymorphism in AGT and AGTR1 gene is associated with lead-related high blood pressure. Renin Angiotensin Aldosterone Syst doi 1470320313516174 (2014).

    Google Scholar 

  13. Topol, E. J. et al. Genetic susceptibility to myocardial infarction and coronary artery disease. Hum Mol Gen 15:R117–R1239 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Malatino, L. S. et al. Renal endothelin-1 is linked to changes in urinary salt and volume in essential hypertension. J Nephrol 13:178–184 (2000).

    CAS  PubMed  Google Scholar 

  15. Asai, T. et al. Endothelin-1 gene variant associates with blood pressure in obese Japanese subjects: the Ohasama Study. Hypertension 38:1321–1324 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Molero, L. et al. Involvement of endothelium and endothelin-1 in lead-induced smooth muscle cell dysfunction in rats. Kidney Int 69:685–690 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Jin, J. J. et al. Association of endothelin-1 gene variant with hypertension. Hypertension 41:163–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Whelton, P. K. et al. Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. JAMA 288:1882–1888 (2002).

    Article  PubMed  Google Scholar 

  19. Williams, S. S. Advances in genetic hypertension. Curr Opin Pediatr 19:192–198 (2007).

    Article  PubMed  Google Scholar 

  20. Rankinen, T. et al. Effect of endothelin 1genotype on blood pressure is dependent on physical activity or fitness levels. Hypertension 50:1120–1125 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Tiret, L. et al. The Lys198Asn Polymorphism in the Endothelin-1 Gene Is Associated With Blood Pressure in Overweight People. Hypertension 33:1169–1174 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Jin, J. J. et al. Association of endothelin-1 gene variant with hypertension. Hypertension 41:163–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Dong, Y. et al. Endothelin-1 gene and progression of blood pressure and left ventricular mass: longitudinal findings in youth. Hypertension 44:884–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Yanagisawa, M. et al. A novel potent vasoconstrictor peptide produced by vascular endothedlial cells. Nature 332:411–415 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Sessa, W. C. et al. The biosynthesis of endothelin-1 by human polymorphonuclear leukocytes. Biochem Biophys Res Commun 174:613–618 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida, H. et al. Endothelin-1 Production by Human Synoviocytes. Ann Clin Biochem 35:290–294 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Kiowski, W., Lü scher, T. F., Linder, L. & Bühler, F. R. Endotehlin-1-induced vasoconstriction in humans. Reversal by calcium channel blockade but not by nitrovasodilators or endotehdlium-derived relaxing factor. Am Heart Assoc 83:469–475 (1991).

    CAS  Google Scholar 

  28. Cardillo, C. et al. Improved Endothelium-Dependent Vasodilation After Blockade of Endothelin Receptors in Patients With Essential Hypertension. Am Heart Assoc 105:452–456 (2002).

    CAS  Google Scholar 

  29. Levin, E. R. Endothelins. N Engl J Med 333:356–363 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Elijovich, F. et al. Regulation of Plasma Endothelin by Slat in Salt-Sensitive Hypertension. Am Heart Assoc 103:263–268 (2001).

    CAS  Google Scholar 

  31. Sarafidis, P. A. & Bakris, G. L. Non-esterified fatty acids and blood pressure elevation: a mechanism for hypertension in subjects with obesity/insulin resistance? J Hum Hypertens 21:12–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Schiffrin, E. L. Role of endothelin-1 in hypertension and vascular disease. Am J Hypertens 14:83S–89S (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Yasuda, H. et al. Association of single nucleotide polymorphisms in endothelin family genes with the progression of atherosclerosis in patients with essential hypertension. J Hum Hypertens 21:883–892 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Hirai, Y. et al. Plasma endothelin-1 level is related to renal function an smoking status but not to blood pressure: and epidemiological study. J Hypertens 22:713–718 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Campia, U., Cardillo, C. & Panza, J. A. Ethnic differences in the vasoconstrictor activity of endogenous endothelin-1 in hypertensive patients. Circulation 109:3191–3195 (2004).

    Article  PubMed  Google Scholar 

  36. Fernandez, F. J. Micromethod for lead determination in whole blood by atomic absorption, with use of the graphite furnace. Clin Chem 21:558–561 (1975).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Jae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Kim, HK., Won, H. et al. Genetic relationship between an endothelin 1 gene polymorphism and lead-related high blood pressure. Mol. Cell. Toxicol. 12, 111–116 (2016). https://doi.org/10.1007/s13273-016-0014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-016-0014-1

Keywords

Navigation