Skip to main content
Log in

The tissue expression of MCT3, MCT8, and MCT9 genes in women with breast cancer

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Breast cancer (BC) is a common malignancy with a high mortality rate. Malignant cell transformation is associated with metabolic changes. One group of proteins that are affected is the monocarboxylate transporters (MCTs-SLC16A). The MCTs comprise 14 members, and they play an important role in the growth, proliferation, and metabolism of cancer cells by transporting monocarboxylates such as lactate, pyruvate and thyroid hormones.

Objective

We aimed to evaluate the expression of MCT3 (SLC16A8), MCT8 (SLC16A2) and MCT9 (SLC16A9) genes in breast cancer samples, comparing to normal adjacent tissues.

Methods

Forty paired breast cancer tumor samples, the adjacent non-tumor and five healthy tissues were collected. Three cancer cell lines (MCF-7, MDA-MB-231, and SKBR3) were also analyzed. The expression of SLC16A8, SLC16A2 and SLC16A9 were assessed using quantitative real-time PCR. The relationship between gene expression with the pathological features of the tumors, and the hormone receptors status of the patient’s tumors were also analyzed.

Results

There was a significantly lower expression of the MCT3 gene in tumor samples compared to adjacent normal tissue and healthy samples (p value < 0.05). There was a significant difference in the expression of all three candidate genes between the BC tissues and normal tissues, and for the, tissues with different hormone receptor status and the molecular subtypes. Altered MCT8 and MCT9 gene expression was associated with a reduced survival

Conclusion

MCT3 expression is significantly downregulated in breast cancer tissue. MCT3 may represent a novel therapeutic target in breast cancer patients, or in some hormone receptor subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available.

Abbreviations

BC:

Breast cancer

ER:

Estrogen receptor

HER2:

Human epidermal growth factor receptor 2

MCTs:

Monocarboxylate transporters

LDHs:

Lactate dehydrogenases

AHD:

Allan–Herndon–Dudley syndrome

HPRT1:

Hypoxanthine phosphoribosyltransferase1

References

  • Aveseh M, Nikooie R, Aminaie M (2015) Exercise-induced changes in tumour LDH-B and MCT1 expression are modulated by oestrogen-related receptor alpha in breast cancer-bearing BALB/c mice. J Physiol 593:2635–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badziong J, Ting S, Synoracki S, Tiedje V, Brix K, Brabant G, Moeller LC, Schmid KW, Fuhrer D, Zwanziger D (2017) Differential regulation of monocarboxylate transporter 8 expression in thyroid cancer and hyperthyroidism. Eur J Endocrinol 177:243–250

    Article  CAS  PubMed  Google Scholar 

  • Bogenrieder T, Herlyn M (2003) Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 22:6524–6536

    Article  CAS  PubMed  Google Scholar 

  • Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BV, Varambally S (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19:649–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Cheng H, Bai Z, Li J (2017) Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer 8:3131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Do Hyoung L, Kim WS, Kim SJ, Yoo HY, Ko YH (2015) Microarray gene-expression profiling analysis comparing PCNSL and non-CNS diffuse large B-cell lymphoma. Anticancer Res 35:3333–3340

    Google Scholar 

  • Draoui N, Feron O (2011) Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. DMM 4:727–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eilertsen M, Andersen S, Al-Saad S, Kiselev Y, Donnem T, Stenvold H, Pettersen I, Al-Shibli K, Richardsen E, Busund L-T (2014) Monocarboxylate transporters 1–4 in NSCLC: MCT1 is an independent prognostic marker for survival. PLoS ONE 9:e105038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Estiar MA, Esmaeili R, Zare A-A, Farahmand L, Fazilaty H, Zekri A, Jafarbeik-Iravani N, Majidzadeh-a K (2017) High expression of CEACAM19, a new member of carcinoembryonic antigen gene family, in patients with breast cancer. Clin Exp Med 17:547–553

    Article  CAS  PubMed  Google Scholar 

  • Friesema EC, Ganguly S, Abdalla A, Fox JEM, Halestrap AP, Visser TJ (2003) Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278:40128–40135

    Article  CAS  PubMed  Google Scholar 

  • Gallagher SM, Castorino JJ, Wang D, Philp NJ (2007) Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res 67:4182–4189

    Article  CAS  PubMed  Google Scholar 

  • Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123:725–731

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP (2013) The SLC16 gene family–structure, role and regulation in health and disease. Mol Aspects Med 34:337–349

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Meredith D (2004) The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447:619–628

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding C, Pompei F, Burmistrov D, Welch HG, Abebe R, Wilson R (2015) Breast cancer screening, incidence, and mortality across US counties. JAMA Intern Med 175:1483–1489

    Article  PubMed  Google Scholar 

  • Hiscox S, Baruah B, Smith C, Bellerby R, Goddard L, Jordan N, Poghosyan Z, Nicholson RI, Barrett-Lee P, Gee J (2012) Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan. BMC Cancer 12:458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussien R, Brooks GA (2010) Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Gen 43:255–264

    Article  CAS  Google Scholar 

  • Jézéquel P, Campone M, Gouraud W, Guérin-Charbonnel C, Leux C, Ricolleau G, Campion L (2012) bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer. Breast Cancer Res Treat 131:765–775

    Article  PubMed  Google Scholar 

  • Jézéquel P, Frénel J-S, Campion L, Guérin-Charbonnel C, Gouraud W, Ricolleau G, Campone M (2013) bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses. Database 2013

  • Kim GR, Ku YJ, Cho SG, Kim SJ, Min BS (2017) Associations between gene expression profiles of invasive breast cancer and Breast Imaging Reporting and Data System MRI lexicon. Ann Surg Treat Res 93:18–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix M, Haibe-Kains B, Hennuy B, Laes J-F, Lallemand F, Gonze I, Cardoso F, Piccart M, Leclercq G, Sotiriou C (2004) Gene regulation by phorbol 12-myristate 13-acetate in MCF-7 and MDA-MB-231, two breast cancer cell lines exhibiting highly different phenotypes. Oncol Rep 12:701–707

    CAS  PubMed  Google Scholar 

  • Liu Z, Zhang X-S, Zhang S (2014) Breast tumor subgroups reveal diverse clinical prognostic power. Sci Rep 4:4002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luz M, Perez M, Azzalis L, Sousa L, Adami F, Fonseca F, Alves B (2017) Evaluation of MCT1, MCT4 and CD147 genes in peripheral blood cells of breast cancer patients and their potential use as diagnostic and prognostic markers. Int J Mol Sci 18:170

    Article  PubMed Central  CAS  Google Scholar 

  • Mishra D, Banerjee D (2019) Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment. Cancers 11:750

    Article  CAS  PubMed Central  Google Scholar 

  • Moslemi M, Sohrabi E, Azadi N, Zekri A, Afkhami H, Khaledi M, Razmara E (2020) Expression analysis of EEPD1 and MUS81 genes in breast Cancer. Bio J Sci Tech Res 29:22556–22564

    Google Scholar 

  • Moslemi M, Moradi Y, Dehghanbanadaki H, Afkhami H, Khaledi M, Sedighimehr N, Fathi J, Sohrabi E (2021) The association between ATM variants and risk of breast cancer: a systematic review and meta-analysis. BMC Cancer 21:1–12

    Article  Google Scholar 

  • Pérez-Escuredo J, Van Hee VF, Sboarina M, Falces J, Payen VL, Pellerin L, Sonveaux P (2016) Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta BBA Mol Cell Res 1863:2481–2497

    Article  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36–e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinheiro C, Longatto-Filho A, Scapulatempo C, Ferreira L, Martins S, Pellerin L, Rodrigues M, Alves VA, Schmitt F, Baltazar F (2008) Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Virchows Arch 452:139–146

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro C, Albergaria A, Paredes J, Sousa B, Dufloth R, Vieira D, Schmitt F, Baltazar F (2010) Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma. Histopathology 56:860–867

    Article  PubMed  Google Scholar 

  • Pinheiro C, Longatto-Filho A, Azevedo-Silva J, Casal M, Schmitt FC, Baltazar F (2012) Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr 44:127–139

    Article  CAS  PubMed  Google Scholar 

  • Rezaie E, Pour AB, Amani J, Hosseini HM (2019) Bioinformatics predictions, expression, purification and structural analysis of the PE38KDEL-scfv immunotoxin against EPHA2 receptor. Int J Pept Res Ther 26(2):979–996

    Article  CAS  Google Scholar 

  • Rezaie E, Amani J, Pour AB, Hosseini HM (2020) A new scfv-based recombinant immunotoxin against EPHA2-overexpressing breast cancer cells; high in vitro anti-cancer potenc. Eur J Pharmacol 870:172912

    Article  CAS  PubMed  Google Scholar 

  • Schwartz CE, Stevenson RE (2007) The MCT8 thyroid hormone transporter and Allan–Herndon–Dudley syndrome. Best Pract Res Clin Endocrinol 21:307–321

    Article  CAS  Google Scholar 

  • Si W, Li Y, Han Y, Zhang F, Wang Y, Li Y, Linghu RX, Zhang X, Yang J (2015) Epidemiological and clinicopathological trends of breast cancer in Chinese patients during 1993 to 2013: a retrospective study. Medicine 94(26):e820

  • Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Investig 118:3930–3942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stein C, Colditz G (2004) Modifiable risk factors for cancer. Br J Cancer 90:299–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Deure WM, Peeters RP, Visser TJ (2010) Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters. J Mol Endocrinol 44:1

    Article  PubMed  CAS  Google Scholar 

  • Végran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71:2550–2560

    Article  PubMed  Google Scholar 

  • Weigelt B, Peterse JL, Van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  CAS  PubMed  Google Scholar 

  • Wolman I (2014) Berek and Novak’s gynecology, 15th edn. Springer, New York

    Google Scholar 

  • Wong DJ, Hurvitz SA (2014) Recent advances in the development of anti-HER2 antibodies and antibody-drug conjugates. Ann Transl Med 2(12):122

  • Yersal O, Barutca S (2014) Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Clin Oncol 5:412

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng A, Kallio A, Harkonen P (2007) Tamoxifen-induced rapid death of MCF-7 breast cancer cells is mediated via extracellularly signal-regulated kinase signaling and can be abrogated by estrogen. Endocrinology 148:2764–2777

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Goldschmidt-Clermont PJ, Dong C (2005) Inactivation of monocarboxylate transporter MCT3 by DNA methylation in atherosclerosis. Circulation 112:1353–1361

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is financially supported by Iran University of Medical Sciences, Tehran, Iran, in 2018. All parts of the work were carried out in the ‘Genetic laboratory of Ali Asghar Children’s’ and Rasoul Akram Hospitals, Tehran, Iran. The authors of the current study would like to express their deep thanks to all staff of these hospitals.

Funding

This study is financially supported by Iran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

ES, NN, AZ, MK and JF are major contributors in writing the manuscript and design, MM, EH, MK, HA participated in writing the manuscript, MK, JF, HA and MM participated in writing the manuscript and data interpretation, NN, ES and A.Z participated in design, participated in manuscript writing, and conducted statistics. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nahid Nafissi or Ali Zekri.

Ethics declarations

Conflict of interest

Ehsan Sohrabi, Masoumeh Moslemi, Ehsan Rezaie, Nahid Nafissi, Mansoor Khaledi, Hamed Afkhami, Javad Fathi and Ali Zekri declare that they have no conflict of interest.

Ethics approval and consent to participate

The study was approved by the Ethics Committee of Iran University of Medical Sciences, Tehran, Iran with code number IR.IUMS.FMD.REC.1397.159.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, E., Moslemi, M., Rezaie, E. et al. The tissue expression of MCT3, MCT8, and MCT9 genes in women with breast cancer. Genes Genom 43, 1065–1077 (2021). https://doi.org/10.1007/s13258-021-01116-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-021-01116-w

Keywords

Navigation