Skip to main content
Log in

Identification of putative ingestion-related olfactory receptor genes in the Chinese mitten crab (Eriocheir japonica sinensis)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Olfaction plays a central role in mating, spawning, obtaining food and escaping predators, which is essential for survival and reproduction of animals. The nature of the olfactory perception in crabs, which is a major group of crustaceans, has remained elusive.

Objective

This project aims to explore the molecular mechanism of olfaction in crabs and further improve our understanding of olfactory perception in crustaceans.

Methods

The olfactory receptors and ingestion-related gene expression in Eriocheir japonica sinensis were studied by transcriptomic techniques. The de novo assembly, annotation and functional evaluation were performed with bioinformatics tools.

Results

A series of chemosensory receptors associated with olfaction were identified including 33 EsIRs, 24 EsIGluRs, 58 EsVIGluRs, 1 EsOR and 1 EsGC-D. We found IRs were key odorant receptors demonstrating a specific species evolutionary trend in crustaceans. Furthermore, we identified ORs in E. j. sinensis and Litopenaeus vannamei. The incomplete EsOR and LvOR1 structures implied that ORs exist in crustaceans, and may have been degenerated or even lost in the olfactory evolutionary process. In addition, comparative transcriptome analysises demonstrated two possible olfactory transduction pathways of E. j. sinensis: the cGMP-mediated olfactory pathway related to vegetable odor molecules and the cAMP-mediated olfactory pathway related to meat odor molecules. The above results were consistent with its omnivorous ingestion of E. j. sinensis.

Conclusions

Our study revealed the unique olfactory molecular mechanism of omnivorous crabs and provided valuable information for further functional research on the chemoreception mechanisms in crustaceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed T, Zhang T, Wang Z, He K, Bai S (2016) Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum. Sci Rep UK 6:24078

    Article  CAS  Google Scholar 

  • Altschul SF (1997) Gapped BLAST and PSI-BLAST: a new generation of protein detabase search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakalyar HA, Reed RR (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406

    Article  CAS  PubMed  Google Scholar 

  • Belsham DD, Wetsel WC, Mellon PL (1996) NMDA and nitric oxide act through the cGMP signal transduction pathway to repress hypothalamic gonadotropin-releasing hormone gene expression. Embo J 15:538–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. Plos Biol 4:240–257

    Article  CAS  Google Scholar 

  • Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136:149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonadonna F, Bretagnolle V (2007) Smelling home: a good solution for burrow-finding in nocturnal petrels? J Exp Biol 205:2519

    Article  Google Scholar 

  • Brunet LJ, Gold GH, Ngai J (1996) General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17:681–693

    Article  CAS  PubMed  Google Scholar 

  • Buck L, Axel R (2004) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  Google Scholar 

  • Chen Y, He M, Li Z, Zhang Y, He P (2016) Identification and tissue expression profile of genes from three chemoreceptor families in an urban pest Periplaneta americana. Sci Rep UK 6:27495

    Article  CAS  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Corey EA, Bobkov Y, Ukhanov K, Ache BW (2013) Ionotropic crustacean olfactory receptors. PLoS ONE 8:e60551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dan R (1992) Chemosensation in the daily life of crabs. Am Zool 32:363–369

    Article  Google Scholar 

  • Derby CD, Kozma MT, Senatore A, Schmidt M (2016) Molecular mechanisms of reception and perireception in crustacean chemoreception: a comparative review. Chem Senses 41:381

    Article  CAS  PubMed  Google Scholar 

  • Du L, Zhao X, Liang X, Gao X, Liu Y, Wang G (2018) Identification of candidate chemosensory genes in Mythimna separata by transcriptomic analysis. BMC Genom 19:518

    Article  Google Scholar 

  • Eliash N, Singh NK, Thangarajan S, Sela N, Leshkowitz D, Kamer Y, Zaidman I, Rafaeli A, Soroker V (2017) Chemosensing of honeybee parasite, Varroa destructor: transcriptomic analysis. Sci Rep 7:13091

    Article  PubMed  PubMed Central  Google Scholar 

  • Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218

    Article  CAS  PubMed  Google Scholar 

  • Fisheries and Aquaculture Department FAO (2007) The state of world fisheries and aquaculture, vol 4. Fao, Rome, pp 40–41

  • Fülle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL (1995) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci USA 92:3571–3575

    Article  PubMed  Google Scholar 

  • Garbers DL, Koesling D, Schultz G (2004) Guanylyl cyclase receptors. Encycl Endocr Dis 269:415–421

    Google Scholar 

  • Garm A, Shabani S, Hoeg JT, Derby CD (2005) Chemosensory neurons in the mouthparts of the spiny lobsters panulirus argus and panulirus interruptus (crustacea: decapoda). J Exp Mar Biol Ecol 314:175–186

    Article  Google Scholar 

  • Groh KC, Heiko V, Stensmyr MC, Ewald GW, Hansson BS (2013) The hermit crab’s nose-antennal transcriptomics. Front Neurosci 7:266

    PubMed  Google Scholar 

  • Groh-Lunow KC, Getahun MN, Grosse-Wilde E, Hansson BS (2015) Expression of ionotropic receptors in terrestrial hermit crab’s olfactory sensory neurons. Front Cell Neurosci 8:448

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu S, Zhou J, Wang G, Zhang Y, Guo Y (2013) Sex pheromone recognition and immunolocalization of three pheromone binding proteins in the black cutworm moth Agrotis ipsilon. Insect Biochem Mol 43:237–251

    Article  CAS  Google Scholar 

  • Guo H, Tang D, Shi X, Wu Q, Wang Z (2019) Comparative transcriptome analysis reveals the expression and characterization of digestive enzyme genes in the hepatopancreas of the Chinese mitten crab. Fish Sci 85:6

    Article  Google Scholar 

  • Jiang HC, Qian ZJ, Lu W, Ding HY, Yu HW, Wang H, Li JL (2015) Identification and characterization of reference genes for normalizing expression data from red swamp crawfish Procambarus clarkii. Int J Mol Sci 16:21591–21605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Reed RR (1989) Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244:790–795

    Article  CAS  PubMed  Google Scholar 

  • Juilfs DM, Zhao AZ, Houslay MD, Garbers DL, Beavo JA, Fulle HJ (1997) INAUGURAL ARTICLE by a recently elected academy member: a subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-d define a unique olfactory signal transduction pathway. Proc Natl Acad Sci USA 94:3388–3395

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:480–484

    Article  Google Scholar 

  • Li XM, Zhu XY, Wang ZQ, Wang Y, He P, Chen G, Sun L, Deng DG, Zhang YN (2015) Candidate chemosensory genes identified in Colaphellus bowringi by antennal transcriptome analysis. BMC Genom 16:1028

    Article  Google Scholar 

  • Liu CY, Fraser SE, Koos DS (2010) Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway. J Comp Neurol 516:36–48

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Macy RL, Naumann HD, Bailey ME (1964) Water-soluble flavor and odor precursors of meat. I. Qualitative study of certain amino acids, carbohydrates, non-amino acid nitrogen compounds, and phosphoric acid esters of beef, pork, and lamb. J Food Sci 29:136–141

    Article  CAS  Google Scholar 

  • Markowska M, Rakusa-Suszczewski S, Kidawa A (2004) Chemosensory behaviour in the mud crab, Rhithropanopeus harrisii tridentatus from Martwa Wisla Estuary (Gdansk Bay, Baltic Sea). Crustaceana 77:897–908

    Article  Google Scholar 

  • Morrison EE, Costanzo RM (2010) Morphology of olfactory epithelium in humans and other vertebrates. Microsc Res Tech 23:49–61

    Article  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621

    Article  CAS  PubMed  Google Scholar 

  • Ni L, Klein M, Svec KV, Budelli G, Chang EC, Ferrer AJ, Benton R, Samuel AD, Garrity PA (2016) The ionotropic receptors IR21a and IR25a mediate cool sensing in Drosophila. Elife 5:e13254

    Article  PubMed  PubMed Central  Google Scholar 

  • Omar RS, Daley AC, Davide P (2013) Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol Cb 23:392–398

    Article  Google Scholar 

  • Ortiz CO, Serge F, Jun T, Ahmed HK, Goldsmith AD, Roger P, Mccormick KE, Hirofumi K, Yuichi I, Shawn L (2009) Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases. Curr Biol Cb 19:996–1004

    Article  CAS  PubMed  Google Scholar 

  • Oujifard A, Seyfabadi J, Kenari AA, Rezaei M (2012) Growth and apparent digestibility of nutrients, fatty acids and amino acids in Pacific white shrimp, Litopenaeus vannamei, fed diets with rice protein concentrate as total and partial replacement of fish meal. Aquaculture 342:56–61

    Article  Google Scholar 

  • Pace U, Hanski E, Salomon Y, Lancet D (1985) Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature 316:255–258

    Article  CAS  PubMed  Google Scholar 

  • Pelletier J, Guidolin A, Syed Z, Cornel AJ, Leal WS (2010) Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of Oviposition Attractants. J Chem Ecol 36:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poling KR, Fraser EJ, Sorensen PW (2001) The three steroidal components of the goldfish preovulatory pheromone signal evoke different behaviors in males. Comp Biochem Physiol Part B Biochem Mol Biol 129:645–651

    Article  CAS  Google Scholar 

  • Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson HM, Gadau J, Wanner KW (2010) The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis. Insect Mol Biol 19:121–136

    Article  CAS  PubMed  Google Scholar 

  • Rytz R, Croset V, Benton R (2013) Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem Mol Biol 43:888–897

    Article  CAS  PubMed  Google Scholar 

  • Sheng S, Liao CW, Zheng Y, Zhou Y, Xu Y, Song WM, He P, Zhang J, Wu FA (2017) Candidate chemosensory genes identified in the endoparasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) by antennal transcriptome analysis. Comp Biochem Physiol Part D Genom Proteom 22:20

    CAS  Google Scholar 

  • Singer MS (2005) Toward a rational structure–function analysis of odour molecules: the olfactory receptor TM4 domain. Flavours Fragr 214:3–10

    Article  Google Scholar 

  • Stepanyan R, Day K, Urban J, Hardin D, Shetty R, Derby C, Ache B, Mcclintock T (2006) Gene expression and specificity in the mature zone of the lobster olfactory organ. Physiol Genom 25:224–233

    Article  CAS  Google Scholar 

  • Sun YJ, Keeton AB, Tinsley HN, Butler BL, Binkowski BF, Piazza GA (2011) Abstract 5443: a novel biosensor for monitoring intracellular cGMP in live cells. Cancer Res 71:5443–5443

    Article  Google Scholar 

  • Trese LZ, Cockerham RE, Stylianos M, Martin B, Garbers DL, Reed RR, Frank Z, Munger SD (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci USA 104:14507–14512

    Article  Google Scholar 

  • Vincent C, Raphael R, Cummins SF, Aidan B, David B, Henrik K, Gibson TJ, Richard B (2010) Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet 6:e1001064

    Article  Google Scholar 

  • Walker WB, Roy A, Anderson P, Schlyter F, Hansson BS, Larsson MC (2019) Transcriptome analysis of gene families involved in chemosensory function in Spodoptera littoralis (Lepidoptera: Noctuidae). BMC Genom 20:428

    Article  Google Scholar 

  • Wang TT, Si FL, He ZB, Chen B (2018) Genome-wide identification, characterization and classification of ionotropic glutamate receptor genes (iGluRs) in the malaria vector Anopheles sinensis (Diptera: Culicidae). Parasite Vector 11:34

    Article  Google Scholar 

  • Whiteman NK, Pierce NE (2008) Delicious poison: genetics of Drosophila host plant preference. Trends Ecol Evol 23:473–478

    Article  PubMed  Google Scholar 

  • Wyatt TD (2014) Pheromones and animal behavior: chemical signals and signatures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Yang Z, Zhou J, Wei B, Cheng Y, Zhang L, Zhen X, Dahms H (2019) Comparative transcriptome analysis reveals osmotic-regulated genes in the gill of Chinese mitten crab (Eriocheir sinensis). PLoS ONE 14:e0210469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Jin W, Wang JX, Zhang X, Chen MM, Zhu ZH, Lee H, Lee M, Zhang YP (2010) Characterization of TRPC2, an essential genetic component of VNS chemoreception, provides insights into the evolution of pheromonal olfaction in secondary-adapted marine mammals. Mol Biol Evol 27:1467–1477

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yuan J, Sun Y, Li S, Gao Y, Yu Y, Liu C, Wang Q, Lv X, Zhang X (2019) Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat Commun 10:356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Rebach S (1999) Chemosensory orientation of the rock crab Cancer irroratus. J Chem Ecol 25:315–329

    Article  CAS  Google Scholar 

  • Zhu QH, Zhou ZK, Tu DD, Zhou YL, Wang C, Liu ZP, Gu WB, Chen YY, Shu MA (2018) Effect of cadmium exposure on hepatopancreas and gills of the estuary mud crab (Scylla paramamosain): histopathological changes and expression characterization of stress response genes. Aquat Toxicol 195:1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from National Natural Science Foundation of China to ZFW (No. 31702014), Jiangsu Provincial Key Laboratory for Bioresources of Saline Soils Open Foundation to ZFW (Grant No. JKLBS2019006), and Doctoral Scientific Research Foundation of Yancheng Teachers University to ZFW.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Investigation, ZFW, CCS and YPZ; Data curation, CCS, DT and YPZ; Funding acquisition, ZFW; Project administration, CCS and YPZ; Resources, ZFW and DT; Software, CCS and YPZ; Validation, WL and YQL; Visualization, CCS and YPZ; Writing—original draft, CCS; Writing—review and editing, CCS and DT. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Zhengfei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Tang, D., Zhang, Y. et al. Identification of putative ingestion-related olfactory receptor genes in the Chinese mitten crab (Eriocheir japonica sinensis). Genes Genom 43, 479–490 (2021). https://doi.org/10.1007/s13258-021-01065-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-021-01065-4

Keywords

Navigation