Skip to main content
Log in

Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Chloroplasts are a common character in plants. The chloroplasts in each plant lineage have shaped their own genomes, plastomes, by structural changes and transferring many genes to nuclear genomes during plant evolution. Some plastid genes have introns that are mostly group II introns.

Objective

This study aimed to get genomic and evolutionary insights on the plastomes from green algae to flowering plants.

Methods

Plastomes of 115 species from green algae, bryophytes, pteridophytes (spore bearing vascular plants), gymnosperms, and angiosperms were mined from NCBI organelle genome database. Plastome structure, gene contents and GC contents were analyzed by the in-house developed Phyton code. Intronic features including presence/absence, length, intron phases were analyzed by manually in the annotated information in NCBI.

Results

The canonical quadripartite structures were retained in most plastomes except of a few plastomes that had lost an invert repeat (IR). Expansion or reduction or deletion of IRs resulted in the length variation of the plastomes. The number of protein coding genes ranged from 40 to 92 with an average 79.43 ± 5.84 per plastome and gene losses were apparent in specific lineages. The number of trn genes ranged from 13 to 33 with an average 21.19 ± 2.42 per plastome. Ribosomal RNA genes, rrn, were located in the IRs so that they were present in a duplicate except of the species that had lost one of the IR. GC contents were variable from 24.9 to 51.0% with an average 38.21 ± 3.27%, indicating bias to high AT contents. Plastid introns were present in 18 protein coding genes, six trn genes, and one rrn gene. Intron losses occurred among the orthologous genes in different plant lineages. The plastid introns were long compared with the nuclear introns, which might be related with the spliceosome nuclear introns and self-splicing group II plastid introns. The trnK-UUU intron contained the maturase encoding matK gene except in the chlorophyte algae and monilophyte ferns in which the trnK-UUU was lost, but matK retained. There were many annotation artefacts in the intron positions in the NCBI database. In the analysis of intron phases, phase 0 introns were more frequent than those of phase 2 and 3 introns. Phase polymorphism was observed in the introns of clpP which was derived from nucleotide insertion. Plastid trn introns were long compared to the archaeal or eukaryotic nuclear tRNA introns. Of the six plastid trn introns, one was at the D loop and other five were at the anticodon loop. The insertion sites were conserved among the trn genes in archaea, eukaryotic nuclear and plastid tRNA genes.

Conclusions

Current study refurbrished the previous findings of structural variations, gene contents, and GC contents of the chloroplast genomes from green algae to flowering plants. The study also included some noble findings and discussions on the plastome introns including their length variations and phase variation. We also presented and corrected some false annotations on the introns in protein coding and tRNA genes in the genome database, which might be confirmed by the chloroplast transcriptome analysis in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barbrook AC, Howe CJ, Purton S (2006) Why are plastid genomes retained in non-photosynthetic organisms? Trends Genet 11:101–108. https://doi.org/10.1016/j.tplants.2005.12.004

    Article  CAS  Google Scholar 

  • Bauman N, Akella S, Morev R, Schwartz AS, Brown R, Richardson TH (2018) Next-generation sequencing of Haematococcus lacustris reveals an extremely large 135 megabase chloroplast genome. Genome Annouc 22(6):12. https://doi.org/10.1128/genomA.00181-18

    Article  Google Scholar 

  • Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? Bioessays 6:279–282

    CAS  PubMed  Google Scholar 

  • Birky CW (2001) The inheritance of genes om mitochondria and chloroplasts. Ann Rev Genet 35:125–148

    CAS  PubMed  Google Scholar 

  • Bocco S, Csűrös M (2016) Splice site seldom slide: intron evolution in Oomycetes. Genome Biol Evol 25:2340–2350. https://doi.org/10.1093/gbe/evw157

    Article  Google Scholar 

  • Bonen L, Vogel J (2001) The ins and outs of group II introns. Trends Genet 17:322–331

    CAS  PubMed  Google Scholar 

  • Brouard JS, Turmel M, Otis C, Lemieux C (2016) Proliferation of group II introns in the chloroplast genome of the green alga Oedocladium carolinianum (Chlorophyceae). Peer J 4:e2627. https://doi.org/10.7717/peerj.2627

    Article  CAS  PubMed  Google Scholar 

  • Brown JES, Simpson CG (1998) Splice site selection in plant pre-mRNA splicing. Ann Rev Plant Physiol Plant Mol Biol 49:77–95

    Google Scholar 

  • Cai C, Wang L, Zhou L, Jiao B (2017) Complete chloroplast genome of green tide algae Ulva flexuosa (Ulvophyceae, Chlorophyta) with comparative analysis. PLoS One 12(9):e0184196. https://doi.org/10.1371/journal.pone.0184196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith T (1991) Intron phylogeny: a new hypothesis. Trends Genet 7:145–148

    CAS  PubMed  Google Scholar 

  • Cheng W, Zhou Y, Miao X, An C, Gao H (2018) The putative smallest introns in the Arabidopsis genome. Genome Biol Evol 10:2551–2557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi IS, Schwarz EN, Rhulman TA, Khiyami MA, Hoi Schwarz IS, Rhulman EN, Khiyami TA, Sabir MA, Hajaran JSM, Sabir NH, Rabah MJ, Jansen SRJ (2019) Fluctuations in Fabaceae mitochondrial genome size and content are both ancient and recent. BMC Plant Biol 19:448

    PubMed  PubMed Central  Google Scholar 

  • Crick FHC (1966) Codon-anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555

    CAS  PubMed  Google Scholar 

  • Dabbagh N, Bennett MS, Triemer RE, Preisfeld A (2017) Chloroplast genome expansion by intron multiplication in the basal psychrophilic euglenoid Eutreptiella pomquetensis. Peer J 5:e3725. https://doi.org/10.7717/peerj.3725

    Article  CAS  PubMed  Google Scholar 

  • Deutsch M, Long M (1999) Intron–exon structure of eukaryotic model organisms. Nucl Acids Res 27:3219–3228

    CAS  PubMed  Google Scholar 

  • Dominski Z, Kole R (1991) Selection of splice sites in pre-mRNAs with short internal exons. Mol Cell Biol 11:6075–6083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doolittle WF (1978) Genes in pieces: were they ever together? Nature 272:581–582

    Google Scholar 

  • Duffy AM, Kelchner SA, Wolf PG (2009) Conservation of selection on matK following an ancient loss of its flanking intron. Gene 438:17–25

    CAS  PubMed  Google Scholar 

  • Fekete E, Flipphi M, Ag N, Kavaecz N, Cerquira G, Scazzocchio C, Karaffe L (2017) Amechanism for a single nucleotide intron shift. Nucl Acids Res 45:9085–9092. https://doi.org/10.1093/nar/gkx520

    Article  CAS  PubMed  Google Scholar 

  • Gibbs SP (1990) The evolution of algal chloroplasts, cell walls and surfaces, reproduction, photosynthesis. In: Wiessner W, Robinson DG, Starr RC (eds) Exp Phycol. Springer, Berlin

  • Gilbert W (1987) The exon theory of genes. Cold Spring Hab Sym Quant Biol 52:901–905

    CAS  Google Scholar 

  • Goulding SX, Olmstead RG, Morden CW, Wolfe KH (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252:195–206

    CAS  PubMed  Google Scholar 

  • Guo L, Liu CM (2015) A single-nucleotide exon found in Arabidopsis. Sci Rep 5:18087. https://doi.org/10.1083/srep18087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausner G, Olson R, Simon D, Johnson I, Sanders ER, Karol KG, McCourt RM, Zimmerly S (2005) Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structure. Mol Biol Evol 23:380–391

    PubMed  Google Scholar 

  • Hawkins JD (1988) A survey of intron and exon lengths. Nucl Acids Res 16:9863–9908

    Google Scholar 

  • Hildebrand M, Hallick RB, Passavant CW, Bourque DP (1988) Trans-splicing in chloroplasts: the rps12 loci of Nicotiana tabaccum. Proc Natl Acad Sci 85(2):372–376. https://doi.org/10.1073/pnas.85.2.372

    Article  CAS  PubMed  Google Scholar 

  • Hilu KW, Liang H (1997) The matK gene: sequence variation and application in plant systematics. Am J Bot 84:830–839

    CAS  PubMed  Google Scholar 

  • Hwang D, Cohen JB (1997) U1 small nuclear RNA-promoted exon selection requires a minimal distance between the position of U1 binding and 3’ splice site across exon. Mol Cell Biol 17:7099–7107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kar P, Goyal A, Sen A (2015) Maturase K gene in plant DNA barcoding and phylogenetics. In: Gabor G, Al-Hemaid F (eds) “Plant DNA barcoding and phylogenetics” Ali M. Lambert Academic Press, Germany, pp 79-80

    Google Scholar 

  • Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Ann Rev Plant Biol 64:583–607. https://doi.org/10.1146/annurev-arplant-050312-120144

    Article  CAS  Google Scholar 

  • Kolodner RD, Tewari KK (1979) Inverted repeats in chloroplast DNA of higher plants. Proc Natl Acd Sci USA 76(1):41–45

    CAS  Google Scholar 

  • Koonin EV (2006) The origin of introns and their role in eukaryogenesis: a compromise solution to the intron-early versus intron-late debate? BiolDirect 1:22. https://doi.org/10.1086/1745-6150-1-22

    Article  Google Scholar 

  • Kushel MG, Strickkland R, Palmer JD (1990) An ancient group I intron shared eubacteria and chloroplasts. Science 250:1570–1573

    Google Scholar 

  • Lambowitz A, Zimmerly S (2011) Group II introns: mobile ribozymes that invade DNA. 3(8):a003616. https://doi.org/10.1101/cshperspect.a003616

    Article  CAS  Google Scholar 

  • Lambowtz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35

    Google Scholar 

  • Li J, Gao L, Chen S, Tao K, Su Y, Wang T (2016a) Evolution of short ionverted repeat in Cupressophytes, transfer of AccD to njucleus in Sciadopitys vertcillata and phylogenetic position of Sciadopityaceae. Sci Rep 6:20934. https://doi.org/10.1038/srep20934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZH, Qian ZQ, Liu ZL, Deng TT, Zu YM, Zhao YM, Zhao GF (2016b) The complete chloroplast genome of Armand pine Pinus armandii, an endemic conifer tree species in China. Mitochon DNA Part A. 2635–2637

  • Liere K, Link G (1995) RNA binding activity of the matK protein encoded by the chloroplast trnK intron from mustard (Sinapsis alba). Nucl Acids Res 23:917–921

    CAS  PubMed  Google Scholar 

  • Logsdon JM Jr (1998) The recent origin of spliceosomal introns. Revisited. Curr Opin Genet Dev 8:637–648

    CAS  PubMed  Google Scholar 

  • Long M, Rosenberg C, Gilbert W (1995) Intron phase correlations and the evolution of the intron/exon structure of genes. Proc Natl Acad Sci USA 92:12495–12499

    CAS  PubMed  Google Scholar 

  • Long M, Rosenberg C (2000) Testing the “proto-splice sites” model of intron origin: evidence from analysis of intron phase correlations. Mol Biol Evol 17:1789–1796

    CAS  PubMed  Google Scholar 

  • Martin W, Kowallik K (1999) Annotated English translation of Mereschkowsky’s 1905 paper ‘Über Natur und Ursrung der Chromaophoren im Pflanzenreiche’. Eur J Phycol 34:287–295

    Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa W, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveal plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    CAS  PubMed  Google Scholar 

  • McNeal JR, Kuehl JV, Boore JL, Leebens-Mack J, dePamhillis C (2009) Parallel loss of plastid introns and their maturase in the genus Cuscuta. PLoS One V:e5982. https://doi.org/10.1371/journal.pone.0005982

    Article  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L et al (2007) The Chlamydomonas genome reveals the evolution of key animals and plant functions. Science 318:245–250. https://doi.org/10.1126/science.1143609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael D, Gurusaran M, Santhosh R, Hussain MK, Satheesh SN, Suhan S, Sivaranjan A, Jaiswal A, Sekar K (2019) RepEx: a web server to extract sequence repeats from protein and DNA sequences. Comput Biol Chem 78:424–430

    CAS  PubMed  Google Scholar 

  • Michaud M, Cognat V, Duchêne A-M, Maréchal-Drouard LM (2011) A global picture of tRNA genes in plant genomes. Plant J 66:80–93. https://doi.org/10.1111/j.13465-313X.2011.04490.x

    Article  CAS  PubMed  Google Scholar 

  • Mohanta TK, Khan AL, Hashem A, Abd_Allah EF, Yadav D, Al-Harrasi A (2019) Genomic and evolutionary aspects of chloroplast tRNAs in monocot plants. BMC Plant Biol 19:39. https://doi.org/10.1186/s12870-018-1625-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuhas HE, Emes MJ (2010) Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Mol Biol 51:111–140

    Google Scholar 

  • Nickrent D, García M (2009) On the brink of holoparasitism: plastome evolution in dwarf mistletoes (Arceuthobium, Viscaceae). J Mol Evol 68:603–615

    CAS  PubMed  Google Scholar 

  • Ochoa de Alda JAG, Esteban R, Diago ML, Houmard J (2014) The plastid ancestor originated one of the major cyanobacterial lineages. Nature Commum 5:4837. https://doi.org/10.1038/ncomms5937

    Article  CAS  Google Scholar 

  • Palmer JD, Osorio B, Aldrich J, Thompson WF (1987) Chloroplast DNA evolution among legumes—loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr Genet 11:275–286

    CAS  Google Scholar 

  • Palmer JD, Nugent JM, Herbon LA (1987b) Unusual structure of geranium chloroplast DNA: a triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc Natl Acad Sci USA 84:769–773

    CAS  PubMed  Google Scholar 

  • Pfitzinger H, Weil JH, Pillay DTN, Guillemaut P (1990) Codon recognition mechanisms in plant chloroplasts. Plant Mol Biol 14:805–814

    CAS  PubMed  Google Scholar 

  • Plant AL, Gray JC (1988) Introns in chloroplast protein-coding genes of land plants. Photosynth Res 16:23–39

    CAS  PubMed  Google Scholar 

  • Rogalski M, Karcher D, Bock R (2008) Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 15:192–198

    CAS  PubMed  Google Scholar 

  • Roquet C, Coissac E, Cruaud C, Boleda M, Boyer F, Alberti A, Gielly L, Taberlet P, Thuiller W et al (2016) Understanding the evolution of holoparasitic plants: the complete plastid genome of the holoparasite Cytinus hypocistis (Cytinaceae). Ann Bot 118:885–896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhfel BR, Gitzendanner MA, Soltis P, Soltis DE, Burleigh JG (2014) From algae to angiosperms—inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14:23. https://doi.org/10.1186/1471-2148-14-23

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruhlman T, Jansen RK (2014) The plastid genomes of flowering plants. In: Maliga P (ed) Chloroplast biotechnology: methods and protocols, methods in molecular biology, vol 1132. Springer, New York. https://doi.org/10.1007/978-1-62703-995-6_1

  • Shokolenko L, Venedikova N, Bochkareva A, Wilson GL, Alexeyev MF (2009) Oxidative stress induces degradation of mitochondrial FNA. Nucl Acids Res 37:2539–2548

    CAS  PubMed  Google Scholar 

  • Smith DR, Lee RW (2008) Mitochondrial genome of the colorless green algae Polytomella capuana: a linear molecule with an unprecedented GC contents. Mol Biol Evol 25:487–496

    CAS  PubMed  Google Scholar 

  • Smith DR (2009) Unparalleled GC content in the plastid DNA of Sellaginella. Plant Mol Biol 71:627–639

    CAS  PubMed  Google Scholar 

  • Smith DR (2012) Updating our view of organelle genome nucleotide landscape. Front Genet 3:175. https://doi.org/10.3389/fgene.2012.00175

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith DR (2016) The mutational haphazard hypothesis of organelle genome evolution: 10 years on. Mol Ecol 25:3759–3775

    Google Scholar 

  • Smith DR (2017) Does cell size impact chloroplast genome size? Front Plant Sci 8:2118. https://doi.org/10.3389/fpls.2017.02116

    Article  Google Scholar 

  • Stoltzfus A, Logsdon JM, Palmer JD, Doolittle WF (1997) Intron “sliding” and the diversity of intron positions. Proc Natl Acad Sci USA 94:10739–10744. https://doi.org/10.1073/pnas.94.20.10739

    Article  CAS  PubMed  Google Scholar 

  • Tsuji S, Ueda K, Nishiyama T, Hasebe M, Yoshikawa S, Konagaya A, Nishiuchi T, Yamaguchi K (2007) The complete genome from a lycophyte (microphyllophyte), Selaginella unicata, has a unique inversion, transpositions and may gene losses. J Plat Res 120(2):281–290

    CAS  Google Scholar 

  • Vogel J, Borner T, Hess WR (1999) Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutations. Nucl Acids Res 27:3866–3874

    CAS  PubMed  Google Scholar 

  • Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wicke S, Müller KF, de Pamphillis CW, Quandt D, Wickett N, Zhnag Y, Renner SS, Schneeweiss GM (2013) Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the Broomrape family. Plant Cell 25:3711–3725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, dePamphilis CW, Boore JL, Goffinet B (2008) Functional gene losses occur with minimal size reduction in the plastid genome of parasitic liverwort Aneura mirabilis. Mol Biol Evol 25:393–401

    CAS  PubMed  Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992) Functional and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    CAS  PubMed  Google Scholar 

  • Wu CS, Wang YN, Hsu CY, Lin CP, Chaw SM (2011) Loss of different repeat copies from chloroplast genome of Pinaceae and Cupressophytes and influence of heterotachy on the evaluation of Gymnosperm phylogeny. Genome Biol Evol 3:1284–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CS, Chaw SM (2014) Highly rearranged and size-variable chloroplast genomes in conifers II clade (cupressophytes): evolution towards shorter intergenic spacers. Plant Biotech J 12:344–353

    CAS  Google Scholar 

  • Xu JH, Liu Q, Hu W, Wang T, Xue Q, Messing J (2015) Dynamics of chloroplast genomes in green plants. Genomics 106:221–231

    CAS  PubMed  Google Scholar 

  • Xu Z, Xin T, Bartels D, Li Y, Gu W, Yao H, Liu S, Yu H, Pu X, Zhou J et al (2018) Genome analysis of the ancient tracheophyte Selaginella tamariscina reveals evolutionary features relevant to the acquisition of desiccation tolerance. Mol Plant 11:983–994

    CAS  PubMed  Google Scholar 

  • Yoshihisa T (2014) Handling tRNA introns, archaeal way and eukaryotic way. Front Genet 5:213. https://doi.org/10.3389/fgene.2014.00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Yang Z, Kibukawa M, Paddock M, Passey SA, Wong GK-S (2002) Minimal introns are not “junk”. Genome Res 12:1185–1189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ma J, Yang B, Li R, Zhu W, Sun L, Tian J, Zhang L (2014) The complete chloroplast genome sequence of Taxus chinense var mairei (Taxaceae): loss of an invert repeat region and comparative analysis with related species

  • Zhang HR, Xiang QP, Zhang XC (2018) The unique evolutionary trajectory and dynamic conformation of DR and IR/DR-coexisting plastomes of the early vascular plant Selaginellaceae (Lycophyte). bioRxiv online posted Dec. 26, 2018. https://doi.org/10.1101/505867

  • Zimmerly S, Semper C (2015) Evolution of group II introns. Mobile DNA 6:7. https://doi.org/10.1186/s13100-015-0037-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoschke R, Nakamura M, Liere K, Sugihara M, Börner T, Schmitz-Linneweber C (2010) An organellar maturase associates with multiple group II introns. Proc Natl Avad Sci USA 107:3245–3250

    CAS  Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1984) Junctions of the large single copy region and inverted repeats in Spinacia oleracea and Nicotiana debneyi chloroplast DNA: sequence of the genes for tRNA-His and the ribosomal proteins S19 and L2. Nucl Acids res 24:6547–6558

    Google Scholar 

Download references

Acknowledgements

This work was carried out with the KNU Grant (Grant No. 520180088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Soo Kim.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This study does not contain any performing with human and animals.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

13258_2020_923_MOESM1_ESM.docx

Supplementary Fig. 1. MatK sequence alignment of between Huperzia lucidula and H. serrata. The matK in H. lucidula is not in the trnK-UUU intron, whereas the matK in H. serrata is within the trnK-UUU intron (XLSX 59 kb)

13258_2020_923_MOESM2_ESM.xlsx

Supplementary Table 1. Taxon used in the analysis. Different plant groups were highlighted by different colors such as green for green algae, blue for bryophytes, peach for pteridophytes, deep blue for gymnosperms, yellow for angiosperms (DOCX 15 kb)

13258_2020_923_MOESM3_ESM.xlsx

Supplementary Table 2. The length and GC contents of each partite in the quadripartite plastomes of 115 plastids. Light code for each plant group is the same as Supplementary Table 1. Highlighted with red and blue letters denote IR lacking and obscure IR boundaries or SNPs in IRs, respectively (XLSX 24 kb)

13258_2020_923_MOESM4_ESM.xlsx

Supplementary Table 3. Exon and intron length. Sheet 1: Protein coding genes. Intron phases were highlighted as red for phase 0, blue for phase 1, and green for phase 2 introns, respectively. Sheet 2: tRNA genes (XLSX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, EC., Kim, JH. & Kim, NS. Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns. Genes Genom 42, 553–570 (2020). https://doi.org/10.1007/s13258-020-00923-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-020-00923-x

Keywords

Navigation