Skip to main content
Log in

Genome-wide association study of vitamin E using genotyping by sequencing in sesame (Sesamum indicum)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

At least eight structurally related forms of vitamin E occur in nature, four tocopherols and four tocotrienols, all of which are potent membrane-soluble antioxidants. In this study, we detected two major isoforms in sesame (Sesamum indicum L.) seed: γ-tocopherol and β-tocotrienol. The objective of this study is to investigate the genetic basis of these vitamin E isoforms.

Methods

We  conducted a genome-wide association study (GWAS) using 5962 genome-wide markers, acquired from 96 core sesame accessions. The GWAS was performed using generalized linear (GLM) and mixed linear (MLM) models.

Results

LG08_6621957, on chromosome 8, was detected as having a significant association with γ-tocopherol in both models. It explained 20.9% of γ-tocopherol variation in sesame. For β-tocotrienol, no significant loci were detected according to the two models, but one locus, SLG03_13104062, explained 17.8% of the phenotypic variation. Based on structure and phylogenetic studies, the 96 accessions were clearly clustered into two subpopulations.

Conclusion

This study on sesame demonstrates and provides an evidence that genotyping by sequencing (GBS) based GWAS can be used to identifying important loci for small growing crops. The significant SNPs or genes could be useful for improving the vitamin E content in sesame breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3(10):e3376

    Article  PubMed  PubMed Central  Google Scholar 

  • Brigelius-Flohe R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13(10):1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21(9):1082–1087

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Li H, Liu G (2006) Progress of vitamin E metabolic engineering in plants. Transgenic Res 15(6):655–665

    Article  CAS  PubMed  Google Scholar 

  • Cho EA, Lee CA, Kim YS, Baek SH, Reyes BG, Yun SJ (2005) Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Mol Cells 19(1):1

    Article  Google Scholar 

  • Collakova E, DellaPenna D (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 127(3):1113–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collakova E, DellaPenna D (2003) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 131(2):632–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook WB, Miles D (1992) Nuclear mutations affecting plastoquinone accumulation in maize. Photosynth Res 31(2):99–111

    Article  CAS  PubMed  Google Scholar 

  • DellaPenna D (2005) Progress in the dissection and manipulation of vitamin E synthesis. Trends Plant Sci 10(12):574–579

    Article  CAS  PubMed  Google Scholar 

  • Demurin Y, Skoric D, Karlovic D (1996) Genetic variability of tocopherol composition in sunflower seeds as a basis of breeding for improved oil quality. Plant Breed 115(1):33–36

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falk J, Krauß N, Dähnhardt D, Krupinska K (2002) The senescence associated gene of barley encoding 4-hydroxyphenylpyruvate dioxygenase is expressed during oxidative stress. J Plant Physiol 159(11):1245–1253

    Article  Google Scholar 

  • Garcia I, Rodgers M, Lenne C, Rolland A, Sailland A, Matringe M (1997) Subcellular localization and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA. Biochem J 325(3):761–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia I, Rodgers M, Pepin R, Hsieh T-F, Matringe M (1999) Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco. Plant Physiol 119(4):1507–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Zhang Z (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Christen S, Shigenaga MK, Ames BN (2001) γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr 74(6):714–722

    Article  CAS  PubMed  Google Scholar 

  • Kamal-Eldin A, Appelqvist L-Å (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7):671–701

    Article  CAS  PubMed  Google Scholar 

  • Karunanandaa B, Qi Q, Hao M, Baszis SR, Jensen PK, Wong Y-HH, Moshiri F (2005) Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng 7(5):384–400

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Raclaru M, Schüßeler T, Gruber J, Sadre R, Lühs W, Frentzen M (2005) Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett 579(6):1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Li G-X, Lee M-J, Liu AB, Yang Z, Lin Y, Shih WJ, Yang CS (2011) δ-tocopherol is more active than α-or γ-tocopherol in inhibiting lung tumorigenesis in vivo. Cancer Prevention Res 4(3):404–413

    Article  CAS  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28(18):2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhou Q, Dong L, Wang H, Liu F, Weng J, Xie C (2016) Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC Genomics 17(1):915

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondal N, Bhat K, Srivastava P, Sen S (2016) Effects of domestication bottleneck and selection on fatty acid desaturases in Indian sesame germplasm. Plant Genetic Resour 14:81–90

    Article  CAS  Google Scholar 

  • Park SH, Ryu SN, Bu Y, Kim H, Simon JE, Kim KS (2010) Antioxidant components as potential neuroprotective agents in sesame (Sesamum indicum L.). Food Rev Int 26(2):103–121

    Article  CAS  Google Scholar 

  • Park JH, Suresh S, Cho GT, Choi NG, Baek HJ, Lee CW, Chung JW (2014) Assessment of molecular genetic diversity and population structure of sesame (Sesamum indicum L.) core collection accessions using simple sequence repeat markers. Plant Genetic Resour 12(01):112–119

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purru S, Sahu S, Rai S, Rao A, Bhat KJP, Plants MBO (2018) GinMicrosatDb: a genome-wide microsatellite markers database for sesame (Sesamum indicum L.). Physiol Mol Biol Plants 24(5):929–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattler SE, Cheng Z, DellaPenna D (2004) From Arabidopsis to agriculture: engineering improved vitamin E content in soybean. Trends Plant Sci 9(8):365–367

    Article  CAS  PubMed  Google Scholar 

  • Schwartz H, Ollilainen V, Piironen V, Lampi A-M (2008) Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. J Food Compos Anal 21(2):152–161

    Article  CAS  Google Scholar 

  • Soll J, Schultz G, Joyard J, Douce R, Block MA (1985) Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch Biochem Biophys 238(1):290–299

    Article  CAS  PubMed  Google Scholar 

  • Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14(5):748–750

    CAS  PubMed  Google Scholar 

  • Subramaniam SS, Slater SC, Karberg K, Chen R, Valentin HE, Wong YHH (2008) Nucleic acid sequences to proteins involved in tocopherol synthesis. In: Google Patents

  • Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Zeng H (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 8(3):e58700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theriault A, Chao J-T, Wang Q, Gapor A, Adeli K (1999) Tocotrienol: a review of its therapeutic potential. Clin Biochem 32(5):309–319

    Article  CAS  PubMed  Google Scholar 

  • Truong HT, Ramos AM, Yalcin F, de Ruiter M, van der Poel HJ, Huvenaars KH, van Orsouw NJ (2012) Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS One 7(5):e37565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Eenennaam A, Valentin H, Karunanandaa B, Hao M, Aasen E, Levering C (2003a) Methyltransferase genes and uses thereof. International patent application WO 3:016482

    Google Scholar 

  • Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Aasen ED (2003b) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15(12):3007–3019

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Hua W (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15(2):1

    Article  Google Scholar 

  • Wang X-Q, Yoon M-Y, He Q, Kim T-S, Tong W, Choi B-W, Park Y-J (2015) Natural variations in OsγTMT contribute to diversity of the α-tocopherol content in rice. Mol Genet Genomics 290(6):2121–2135

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, Zhu X (2015) Genetic discovery for oil production and quality in sesame. Nature Commun 6:8609

    Article  CAS  Google Scholar 

  • Wen Z, Tan R, Yuan J, Bales C, Du W, Zhang S, Cregan PB (2014) Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics 15(1):1

    Article  CAS  Google Scholar 

  • Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Yan J (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10(9):e1004573

    Article  PubMed  PubMed Central  Google Scholar 

  • Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC, Hu L, Hirano K (2016) Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genet 48:927

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Miao H, Wang L, Qu L, Liu H, Wang Q, Yue M (2013) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 14(1):401

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the research grant of the Kongju National University in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jin Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Xu, F., Min, MH. et al. Genome-wide association study of vitamin E using genotyping by sequencing in sesame (Sesamum indicum). Genes Genom 41, 1085–1093 (2019). https://doi.org/10.1007/s13258-019-00837-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00837-3

Keywords

Navigation